
Pushkin Documentation
Release 1.0

Joshua Hartshorne

Jun 14, 2020

Contents:

1 Starting a Pushkin Project 1

2 Updating Pushkin 3

3 Pushkin Development 5
3.1 pushkin-api <https://github.com/pushkin-consortium/pushkin-api>‘ 5
3.2 pushkin-worker <https://github.com/pushkin-consortium/pushkin-worker>‘ 5
3.3 pushkin-cli <https://github.com/pushkin-consortium/pushkin-cli>‘ 6
3.4 pushkin-jspsych <https://github.com/pushkin-consortium/pushkin-jspsych>‘ 6

4 Pushkin CLI 7
4.1 make . 7
4.2 prep . 7
4.3 compile . 8
4.4 migrate . 8
4.5 seed . 8
4.6 build . 8
4.7 sync . 9
4.8 start . 9
4.9 init . 9

5 Set Up AWS 11
5.1 Requirements . 11
5.2 Define security groups . 11
5.3 Get an EC2 . 12
5.4 Get databases (RDS) . 12
5.5 Prepare the transactions database . 12
5.6 Get an S3 Bucket . 12
5.7 Get CloudFront . 12
5.8 Get AWS CLI Tools . 13
5.9 Set up IAM Users and Roles . 13

6 Set Up Rancher 15
6.1 Login to Rancher . 15
6.2 Add a Password . 15
6.3 Add a host . 15
6.4 Set Variables . 15

i

6.5 Create a new stack . 16

7 Creating a Quiz 17

8 Foundational Quiz Components 19
8.1 Front-end Page . 19
8.2 Database Preparation Process . 19
8.3 Cron Scripts . 20
8.4 API Controller . 21

9 Frontend Quiz Components 23
9.1 jsPsych Plugins . 23
9.2 Creating Trials . 23
9.3 Saving Data . 24

10 Preparing for Deployment 27
10.1 Deploying Pushkin Locally . 27

11 Maintenance 29
11.1 Logs . 29

12 Mariela’s Notes 31

13 Indices and tables 33

ii

CHAPTER 1

Starting a Pushkin Project

To start a new Pushkin website, you can install everything you need through the node project manager (npm). You
will need to install Node.js and npm <https://www.npmjs.com/get-npm>.

FUBAR - UPDATE FOLLOWING

You will then need to set up the CLT. To do that, after you have cloned pushkin, move to pushkin’s root directory and
run:

` $ chmod +x pushkin_installCLT.sh $./pushkin_installCLT.sh `

This will also install the pushkin developer tools.

Note: These docs assume that the command ‘pushkin’ points to the CLT. If you choose not to do this, be aware that
most of the docs will not work.

Pushkin relies on the following programs, which can easily be installed with Homebrew - if you’re on a Mac - or
another package manager: - node - npm - envsubst

Once these are installed, run pushkin init to automated installing packages and setting up the Pushkin environ-
ment.

Once you’ve got Pushkin downloaded and installed, see Creating a Quiz to make a quiz.

END FUBAR

1

Pushkin Documentation, Release 1.0

2 Chapter 1. Starting a Pushkin Project

CHAPTER 2

Updating Pushkin

FUBAR

3

Pushkin Documentation, Release 1.0

4 Chapter 2. Updating Pushkin

CHAPTER 3

Pushkin Development

We don’t recommend editing core Pushkin code locally, since this will make it difficult to update your distribution
of Pushkin to take advantage of security patches, bug fixes, or new features. Instead, we recommend you fork the
repository for the Pushkin tool in question. You can make a private npm package based on that repository. (If your
changes are ones that others might want to make sure of as well, please submit a pull request!)

The main Pushkin repositories are: pushkin-client <https://github.com/pushkin-consortium/pushkin-client>‘ ———–
A module that wraps around local-axios and provides simplified methods for making calls to a Pushkin API. Note that
these built-in requests assume the API has default routes enabled. Documentation for the Pushkin Client is currently
absent, however the experiment template available via the generate command from the CLI provides a showing of
almost all the features in action.

3.1 pushkin-api <https://github.com/pushkin-consortium/pushkin-
api>‘

Essentially a mini-server designed mainly with the use case of interfacing with Pushkin Client and Pushkin Worker.
Once again, documentation is absent, but there is an example.

3.2 pushkin-worker <https://github.com/pushkin-
consortium/pushkin-worker>‘

Installable via NPM. Adds a “pushkin” command to the path. No documentation available yet

5

https://github.com/pushkin-consortium/pushkin-client

Pushkin Documentation, Release 1.0

3.3 pushkin-cli <https://github.com/pushkin-consortium/pushkin-
cli>‘

Receives messages from RabbitMQ and runs whatever functionality it’s told to run, sending the result back through
the queue it came from. Designed to be on the receiving end of a Pushkin API. Comes with built-in simple functions
that most users will probably want, like “getAllStimuli”. Currently no explicit documentation, just an example.

3.4 pushkin-jspsych <https://github.com/pushkin-
consortium/pushkin-jspsych>‘

The Pushkin fork of JSPsych makes a few small changes to the real JSPsych so that it can be bundled together as if
it’s an NPM module. In order for it to be globally accessible to plugins as they expect, the import must be assigned to
window.jsPsych. No documentation, present in example.

6 Chapter 3. Pushkin Development

CHAPTER 4

Pushkin CLI

The Pushkin CLI comes packaged in the repo. Setup instructions can be found in Starting a Pushkin Project.

Variables relating to file structure and naming practices can be found in ‘.pushkin/pushkin_config_vars.sh’.

Pushkin has the following nested commands:

4.1 make

4.1.1 quiz

Creates a new quiz with all the required basic components. Pass the quiz name as an argument as follows: pushkin
make quiz [quiz name]. Spaces and other special characters should be avoid. Note that the name seen by end
users of the website can be changed to have special characters if needed by modifying the quizzes page in the front
end. Generated quizzes are stored in pushkin_user_quizzes, ‘quizzes/quizzes’ by default.

4.1.2 compose

Creates the file specified by pushkin_docker_compose_noDep_file, replacing all docker variables set in .
env as well as appending quiz compose files from the quizzes directory. Uses pushkin_docker_compose_file
for the original compose file.

4.2 prep

Handles moving files and writing information to the various components of Pushkin infrastructure. This command
allows for all quiz-related information to be consolidated in the quizzes folder.

It moves all quiz files from pushkin_user_quizzes/[quiz name] to their appropriate locations in the api,
cron, front end, etc. and generates a quizzes.js (pushkin_front_end_quizzes_list) file in the front end.

7

Pushkin Documentation, Release 1.0

4.3 compile

Compiles the front end using the command specified by pushkin_front_end_compile_cmd.

Moves the compiled files from pushkin_front_end_dist to pushkin_server_html.

4.4 migrate

Connects to the main database specified in pushkin_env_file and runs knex migrations from the db-worker’s
directory.

4.5 seed

Connects to the main database specified in pushkin_env_file and runs knex seeds from the db-worker’s direc-
tory.

4.6 build

4.6.1 [core container]

Builds the docker container specified by [core container] where [core container] is one of “api”, “cron”, “dbworker”,
or “server”.

4.6.2 core

Builds all the core docker containers.

4.6.3 quizzes

Builds each quiz’s worker by looping through the pushkin_user_quizzes folder, each folder name being used
as the quiz name. The tags given each quiz are templated as follows:

[image_prefix]/[quiz name][pushkin_user_quizzes_docker_suffix]:[image_tag]

where image_prefix and image_tag are specified in the docker ‘.env’ file,
pushkin_user_quizzes_docker_suffix is set in the pushkin config vars, and the quiz name based
off the current folder in the quizzes directory.

4.6.4 all

Does both of the above steps.

8 Chapter 4. Pushkin CLI

Pushkin Documentation, Release 1.0

4.7 sync

4.7.1 coreDockers

Pushes the api, cron, server, and db worker containers to docker hub.

4.7.2 quizDockers

Loops through the pushkin_user_quizzes folder and uses the same templating as in the pushkin build
quizzes to push each image to docker hub.

4.7.3 website

Uses the AWS CLI to sync pushkin_front_end_dist with s3_bucket_name. Note that this means you
must have installed and set up the AWS CLI.

4.7.4 all

Does all of the above steps.

4.8 start

A small convenience utility. Runs docker-compose up on pushkin_docker_compose_noDep_file.

4.9 init

Runs npm install in the api, front-end, and db-worker directories as specified by their variable names in
pushkin_config_vars.sh.

4.7. sync 9

Pushkin Documentation, Release 1.0

10 Chapter 4. Pushkin CLI

CHAPTER 5

Set Up AWS

5.1 Requirements

These instructions assume you have:

• a working version of Pushkin (see Starting a Pushkin Project)

• access to AWS

• a Docker (Hub) account

5.2 Define security groups

You’ll need two security groups: one for rancher and one for the databases.

The rancher EC2 security group should be open to all traffic on ports

Port Protocol
80 TCP
443 TCP
8080 TCP
500 UDP
4500 UDP

This is for normal web access, the rancher management web UI, and the Rancher host infrastructure. The
database security group should be open to all TCP traffic on ports 3306 (MySQL) and 5432 (Postgres).

Instructions on creating an EC2-security-group can be found on AWS. * Note: Link for linux instances *

<<<<<<< HEAD

>>>>>>> c3e5433b7e0799acba0b27a06014ae3af1704178 Instructions on creating a database-security-group can be
found on AWS.

11

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.RDSSecurityGroups.html

Pushkin Documentation, Release 1.0

5.3 Get an EC2

The most straightforward way to do this is to use the official Rancher OS already on Amazon. Create it
with the AMI from the list here appropriate to your region.

Instructions on creating EC2 instances can be found on AWS.

5.4 Get databases (RDS)

You’ll need three databases. One’s for rancher, one’s for transactions, and one’s for stored data, which we
will refer to as Main DB. Launch all three with the database security group created previously. t2.medium
is the recommended size for all of them.

• Rancher DB: MySQL

• Transaction DB: Postgres

• Main DB: Postgres

Instructions on creating RDS Instances can be found on AWS.

5.5 Prepare the transactions database

The transaction database serves as a running log of queries to the Main DB, recording all activity which
passes through it.

Connect to the transactions database just created using any Postgres client and run the following code to
make a transactions table:

create table transactions (
id SERIAL PRIMARY KEY,
query TEXT not null,
bindings TEXT

)

5.6 Get an S3 Bucket

Next, you’ll need an S3 bucket for file backups, data storage, and retrieval. Create a new S3 bucket with
open permissions for all traffic.

Instructions on creating S3 buckets can be found on AWS.

5.7 Get CloudFront

Now, you will need an AWS CloudFront distribution. CloudFront connects to an S3 bucket, and serves to
distribute the contents of that bucket, which could include pickled objects, data-sets, and other resources,
to any web application which possesses a CloudFront URL.

This URL is provided to Pushkin in the .env file located in the root folder.

Instructions on creating CloudFront distributions can be found on AWS.

12 Chapter 5. Set Up AWS

https://docs.aws.amazon.com/efs/latest/ug/getting-started.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_GettingStarted.html
https://docs.aws.amazon.com/quickstarts/latest/s3backup/welcome.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/GettingStarted.html

Pushkin Documentation, Release 1.0

5.8 Get AWS CLI Tools

Follow Amazon’s instructions for installing the AWS CLI here. Alternatively, you could use Homebrew
if you’re on a Mac.

5.9 Set up IAM Users and Roles

You will need some way of securely controlling access to AWS services and resources. This can be
done by setting up IAM roles and users, which allows other developers and contributers to access your
resources without needing to share access keys or passwords.

More information on IAM users can be found here_

5.8. Get AWS CLI Tools 13

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://brew.sh

Pushkin Documentation, Release 1.0

14 Chapter 5. Set Up AWS

CHAPTER 6

Set Up Rancher

If you haven’t Set Up AWS yet, do that first.

6.1 Login to Rancher

SSH into the Rancher EC2 instance and start the docker container for Rancher. Replace the capitalized parts of the
following command with the information for the rancher database created earlier.

sudo docker run -d --restart=unless-stopped --name=rancher -p 8080:8080
→˓rancher/server --db-host DB_URL --db-port 3306 --db-user DB_USER --db-pass
→˓DB_PASSWORD --db-name DB_NAME

You should now be able to connect to Rancher’s web interface by going to the EC2 URL at port 8080.

6.2 Add a Password

Go to Admin > Access Control and set up an access control type of your choice.

6.3 Add a host

Go to Infrastructure > Hosts > Add Host. Use the public IP of the current Rancher EC2 instance for the public IP of
the host and run the command given in the SSH connection already open.

6.4 Set Variables

The “.env” file in the root directory of Pushkin is used to house the configuration of a myriad of docker settings. Open
it in a plain text editor and enter in the corresponding information for each line.

15

Pushkin Documentation, Release 1.0

6.5 Create a new stack

Go to Stacks > New Stack in the Rancher web UI and upload the docker-compose file generated for you
(called “docker-compose.production.noEnvDependency.yml” by default). If this doesn’t exist, make sure
you’ve made a quiz (Creating a Quiz) and done the initial deployment steps (Preparing for Deployment).

16 Chapter 6. Set Up Rancher

CHAPTER 7

Creating a Quiz

Creating quizzes on Pushkin is straightforward. Start in the root of the Pushkin directory and follow the below steps.

Make and setup the basics of a quiz by running the following commands.

pushkin make [quiz name]

There is now a new folder in quizzes/quizzes called [quiz name]. Inside the db_migrations folder are files detailing
the default database structure. The db_seeds folder contains initial data to insert into the database. Modify either of
these to best fit your quiz, or leave them alone to be dealt with later. Once you’re satisfied with them, run pushkin
prep to update the files and then pushkin migrate and pushkin seed to connect to the main database with
connection information in pushkin_env_file.

Next, run the following commands to build the docker containers and create a finalized version of the docker compose
file that contains your new quiz. See Pushkin CLI to learn more about these commands.

pushkin build all pushkin make compose

17

Pushkin Documentation, Release 1.0

18 Chapter 7. Creating a Quiz

CHAPTER 8

Foundational Quiz Components

8.1 Front-end Page

Under the folder ‘quiz_page’ is housed the React component(s) of a Pushkin quiz. When a user visits the quiz page of
the website and clicks a link to a quiz, the default export from index.js is loaded and served on a blank canvas to give
over full control of the page.

8.2 Database Preparation Process

Before a quiz can be run, and data recorded and stored, the database must contain the appropriate tables, and be seeded
with an array of stimuli to present to quiz-takers. This task is handled by files contained in the root db-worker folder.

8.2.1 Database Migrations

Under the migrations folder, you will find several timestamped files for each Pushkin quiz. Each migration file serves
to define and create the columns of a database table, by specifying the names and valid data types of each column.
Each database table deals with a different aspect of quiz data. Take a look at each of them to see how the database is
laid out. Here’s the code for the default users table. You might like to add columns to keep track of more demographics

exports.up = function(knex) {
return knex.schema.createTable('bloodmagic_users', table => {
table.increments('id').primary();
table.string('auth0_id');
table.timestamp('created_at');
table.timestamp('updated_at');
table.date('dob');
table.string('native_language');

});
};

19

Pushkin Documentation, Release 1.0

8.2.2 Database Seeds

The next step is to seed the database, which means adding the initial data. In most cases, this will simply mean adding
stimuli to the stimulus table. You should edit this file to add your own stimuli to the database. The quiz’s front-end
page expects to receive stimuli in JSON format that can be added to its JsPsych timeline.

Note: Make sure to edit the quiz files inside your quiz folder under the root ‘quizzes’ directory. Otherwise it may get
overwritten by pushkin prep, which expects quiz files to be inside the quizzes directory.

8.3 Cron Scripts

Cron is a language-agnostic (meaning that code execution is not limited to a subset of programming languages) service
for running programming scripts on a scheduled, periodic basis. In the context of Pushkin, cron occupies its own
docker container, with its own dependencies, and is composed of two main components:

• Crontab

This is a configuration file which schedules shell commands for execution. Each line of the crontab specifies a
single job, and that job’s schedule.

These sample tasks are executing python scripts, and saving their output (If any) to .txt files.

Execute every 5 minutes.

5 * * * * root echo "test" >> /scripts/log.txt

Execute at time 00:00 (midnight) every day.

0 0 * * * root /usr/bin/python2.7 /scripts/test.py >> /scripts/log.txt

Execute at 10:00 on the first day of every month.

0 10 1 1 * root /usr/bin/python2.7 /scripts/secondTest.py >> /scripts/out.txt

Execute every minute on Monday only.

1 * * * 1 root /usr/bin/python2.7 /scripts/testBoto.py >> /scripts/out2.txt

This system of scheduling is powerful and easy-to-use.

Note: Asterisks are wildcard symbols that default to the max value of that field. For more information and to easily
generate your own crontab from a friendly interface, see the crontab guru <https://crontab.guru>.

20 Chapter 8. Foundational Quiz Components

Pushkin Documentation, Release 1.0

• Scripts

The jobs themselves can be written in any programming language, and can perform any required task on sched-
ule. Cron’s Dockerfile is set by default to load everything in the scripts directory.

These scripts may be useful for periodically organizing or analyzing data. Docker provides this container ac-
cess to your database via an enviroment variable called ‘DATABASE_URL’, which encodes the username and
password as set in the ‘.env’ file as well.

• DockerFile

This file is responsible for establishing the environment of your docker container, installing necessary depen-
dencies and packages by running shell commands. For example, the following three commands install curl, then
pip, then boto3 for python.

– RUN apt-get install curl -y

– RUN curl –silent –show-error –retry 5 https://bootstrap.pypa.io/get-pip.py | python

– RUN pip install boto3

8.4 API Controller

The API controller establishes communication endpoints between the front-end, represented by the quiz and user
interface, and the back-end, which consists of the database and associated workers. Each endpoint serves as an
interface which allows the frontend to make HTTP requests to the core of Pushkin.

A POST endpoint from a quiz controller:

{ path: '/health', method: 'health', queue: db_read_queue },

And the corresponding switch and method in the quiz worker’s handlers:

case 'health':
// no data fields to require
return this.health();
.......
health() {

return Promise.resolve({ message: 'healthy' });
}

Should you need to add your own custom endpoints, simply add a path in your quiz’s API controller, a corresponding
case in the worker’s handler, and whatever functions that method will need.

8.4. API Controller 21

https://bootstrap.pypa.io/get-pip.py

Pushkin Documentation, Release 1.0

22 Chapter 8. Foundational Quiz Components

CHAPTER 9

Frontend Quiz Components

9.1 jsPsych Plugins

Each trial requires a jsPsych plugin to provide the assets and functions necessary to run a certain experimental
paradigm. The quiz template page contains the following require statements, which point towards the jsPsyc folder
contained in front-end/src/quizzes/libraries :

This makes jsPsych core code available. It is needed for all plugins.
require('../libraries/jsPsych/jspsych.js');

This makes code associated with a single plugin available. It is needed for a trial
→˓of a specific type.
require('../libraries/jsPsych/plugins/jspsych-instructions.js');

Plugins are used as templates for single trials. They offer a range of question types, from multiple choice and likert
scales to custom variants which can be created and added as required.

For more information, please refer to jsPsych’s official documentation.

9.2 Creating Trials

Trials are defined and located in quiz_files/jsPsychTimeline.js. This file exports the trials as a single
array, referred to as a timeline. The timeline is fed to a jsPsych init function, which then proceeds to execute the trials
in order.

Below is a sample trial. It is helpful to reference the source code of the plugin which you wish to use, in the jsPsych
folder, in order to understand the requirements of the trial. In general, each can be described as an object with defined
parameters, typically provided with strings of HTML/CSS for formatting, and arrays of strings, images, and audiofiles
to serve as stimuli/answer options for that trial.

Note: This is not correct. I don’t have time to write it all out, but, as I’ve (Jacob) shown Mariela, stimuli for trials are
stored in the database and then retrieved through calls to the API. Axios posts to /startExperiment, then /getStimuli

23

https://www.jspsych.org/tutorials/hello-world/

Pushkin Documentation, Release 1.0

and sends the retrieved info to the “buildTimeline” function in jspTimeline.js. I don’t know why Han wrote this this
way.

A relatively simple trial which serves only to display instructions.
const intro = {

type: 'instructions',
pages: [" <p align='left'> A sample paragraph written in HTML! </p>"],
show_clickable_nav: true,
button_label_next:'Continue'

};

A more complicated trial designed to provide feedback and social-media-sharing
→˓options.
var const testingTrial = {

type: 'display-prediction',
prompt1: "Nuestras tres mejores conjecturas para su lengua materna:",
prompt2: "Nuestras tres mejores conjecturas para su dialecto español:",
prediction1: ['Guess1', 'Guess2', 'Guess3'],
prediction2: ['Guess11', 'Guess22', 'Guess33'],
buttonText: 'Terminar',
quizURL: 'http://www.gameswithwords.org/WhichEnglish/',
subjectLine: 'Mapeando la gramática española por el mundo entero',
teaserPart1: "Ayudé a GamesWithWords.org a entrenar su algoritmo a adivinar qué

→˓español hablo. Adivinó que mi lengua materna es ",
teaserPart2: " y que ",
teaserPart3: " es mi dialecto. Cual español hablas?",
socialSharing: false,
encourageDemographics: 'Por favor continúa para contestar algunas preguntas y

→˓para ayudarnos a entrenar nuestro algoritmo!',
mailButtonImg: `${baseUrl}/quizzes/email.png`,
fbButtonImg: `${baseUrl}/quizzes/fb.png`,
twitterButtonImg: `${baseUrl}/quizzes/twitter.png`,
weiboButtonImg: `${baseUrl}/quizzes/weibo.png`,

Take note of this recordData function. This tells jsPsych what to do with data
recently collected from a trial.

on_finish: data => {
recordData(data);
}

}
}

To create a new trial, simply declare it in jsPsychTimeline.js, and then choose where to insert it into the
timeline.

Each trial, or type of trial, also requires a methods for making an Axios call to the API controller.

9.3 Saving Data

Data saving is carried out automatically by Axios calls within jsPsychTimeline.js. Advanced users should
attempt to edit the endpoints to provide functionality other than basic database reading and writing.

24 Chapter 9. Frontend Quiz Components

Pushkin Documentation, Release 1.0

This function serves to place an Axios call to a pre-defined endpoint, passing
→˓along the user's ID number
and the data from the trial as a JSON string, to be processed by the methods
→˓attached to that endpoint in
the quiz API controller.

const recordData = function(data){
return axios

.post('/stimulusResponse', {
user_id: self.props.user.profile.id,
data_string: data,

})
.then(function(res) {

self.props.dispatchTempResponse({
user_id: self.props.user.profile.id,
data_string: data,

});
})

}

This illustrates a timeline containing only a single trial, with a data recording
→˓function attached at the bottom.

timeline = [
{
type:"survey-multi-choice",
required:[true],
preamble: ['Click on the word that comes closest in meaning to the word in all

→˓CAPS:'],
questions:[stimuli[i].stimulus],
options:[stimuli[i].options.split(", ")],
correct:[stimuli[i].correct],
horizontal:false,
force_correct:false,
on_finish: function(data){

recordData(data)
}

]

9.3. Saving Data 25

Pushkin Documentation, Release 1.0

26 Chapter 9. Frontend Quiz Components

CHAPTER 10

Preparing for Deployment

Once you have installed Pushkin (Starting a Pushkin Project), made a quiz running locally (Creating a Quiz), and
setup AWS (Set Up AWS) you’re ready to deploy to the web.

Run:

pushkin prep
pushkin compile
pushkin build all
pushkin sync all

to prep, build, and push all files online. This may take a few minutes. Once it’s done, run pushkin make compose
to create a Docker compose file without any environment variables that includes your custom quiz workers, suitable for
use with Rancher. The file generated will be called ‘docker-compose.production.noEnvDependency.yml’ by default,
or whatever you’ve set pushkin_docker_compose_noDep_file to.

10.1 Deploying Pushkin Locally

Once you’ve gone through the process of creating and compiling a quiz, you can proceed to locally deploy Pushkin,
in order to freely develop and test quizzes and other site features.

First, run pushkin start to start Pushkin locally.

Now, we need to seed the database for any quizzes which we wish to test or develop. Run docker ps and find the
name of the DB worker container, which is ‘db-worker_1’ by default.

CONTAINER ID IMAGE COMMAND CREATED STATUS
→˓ PORTS NAMES

be3c744c9a81 pushkin_db-worker "bash start.debug.sh" 23 hours ago Up 23
→˓hours pushkin_db-worker_1

27

Pushkin Documentation, Release 1.0

Now, copy that container name and run docker exec -it [name] bash to get a shell inside the DB worker
Docker container. Type npm run migrations to run the migrations, then npm run seed to populate the
database with your seeds. Type exit to return to your normal shell.

Caution: If you have multiple quizzes and have added data to a table in the database that a seed file corresponds
to, be aware that seeding removes all data in the table before beginning. Make sure to first delete the files inside
the seeds folder of the db-worker container that you don’t want to run.

We’re almost done. The last step is to find your server container. Run docker ps again, and this time look for the
server container.

CONTAINER ID IMAGE COMMAND CREATED STATUS
→˓ PORTS NAMES

1744091332f1 pushkin_server "nginx -g 'daemon ..." 24 hours ago Up 7
→˓seconds 0.0.0.0:54328->80/tcp pushkin_server_1

This time, we’re most interested in the port. Select the port which points to 80/tcp. In this example, this is port 54328.
You may now open a browser, and enter http://localhost:[Port Number] to access the local deployment
of Pushkin.

All done! The quiz has been made, its assigned database tables properly seeded, and the Pushkin platform is up and
running.

For more information on the key parts of a Pushkin quiz, see Foundational Quiz Components.

28 Chapter 10. Preparing for Deployment

CHAPTER 11

Maintenance

Learn how to maintain and troubleshoot Pushkin.

11.1 Logs

Logs for docker containers can be viewed by running:

docker logs [container]

where [container] is the name of the docker container you’d like to see logs of. Running containers and their names
can be listed with:

docker ps

29

Pushkin Documentation, Release 1.0

30 Chapter 11. Maintenance

CHAPTER 12

Mariela’s Notes

ReST and MD files are mutually exclusive on the current RTD setup and porting takes a little time. See the original
here:

https://github.com/l3atbc-datadog/pushkin/blob/master/docs/source/old/tutorial.md

31

https://github.com/l3atbc-datadog/pushkin/blob/master/docs/source/old/tutorial.md

Pushkin Documentation, Release 1.0

32 Chapter 12. Mariela’s Notes

CHAPTER 13

Indices and tables

• genindex

• search

33

	Starting a Pushkin Project
	Updating Pushkin
	Pushkin Development
	pushkin-api <https://github.com/pushkin-consortium/pushkin-api>`
	pushkin-worker <https://github.com/pushkin-consortium/pushkin-worker>`
	pushkin-cli <https://github.com/pushkin-consortium/pushkin-cli>`
	pushkin-jspsych <https://github.com/pushkin-consortium/pushkin-jspsych>`

	Pushkin CLI
	make
	prep
	compile
	migrate
	seed
	build
	sync
	start
	init

	Set Up AWS
	Requirements
	Define security groups
	Get an EC2
	Get databases (RDS)
	Prepare the transactions database
	Get an S3 Bucket
	Get CloudFront
	Get AWS CLI Tools
	Set up IAM Users and Roles

	Set Up Rancher
	Login to Rancher
	Add a Password
	Add a host
	Set Variables
	Create a new stack

	Creating a Quiz
	Foundational Quiz Components
	Front-end Page
	Database Preparation Process
	Cron Scripts
	API Controller

	Frontend Quiz Components
	jsPsych Plugins
	Creating Trials
	Saving Data

	Preparing for Deployment
	Deploying Pushkin Locally

	Maintenance
	Logs

	Mariela’s Notes
	Indices and tables

