

Pushkin’s documentation has moved!

Please visit https://languagelearninglab.gitbook.io/pushkin/ to see the latest documentation.

Index

pushkin-api

pushkin-api comes with some convenience classes and functions that makes extending the API for a new experiment staightforward, It is split into two main parts:

	Controller Builder

	Core API

API Controller Builder

The controller builder is what most users will likely want to use for their experiment. It eases the creation of controllers that can be attached to a core Pushkin API. Below is a simple example of how to use it:

import pushkin from 'pushkin-api';
const myController = new pushkin.ControllerBuilder();

const db_read_queue = 'myexp_quiz_dbread';
const db_write_queue = 'myexp_quiz_dbwrite';
const task_queue = 'myexp_quiz_taskworker';

myController.setDefaultPasses(db_read_queue, db_write_queue, task_queue);
myController.setDirectUse('/status', (req, res, next) => res.send('up'), 'get');
myController.setPass('/forum/posts', 'getAllForumPosts', db_read_queue, 'get');
myController.setPass('/forum/posts/:postid', 'getForumPost', db_read_queue, 'get');

module.exports = myController;

The first line imports the API and the second creates a controller builder. The queues refer to specific queues to send information on through RabbitMQ. Using separate queues allows general categorization of data. For example, in the case of a crash, the write queue is backed up so as to avoid loss of research data during times of high traffic. The controller must be exported when done being modified so it can be required by the core API.

The API layer of a Pushkin project has two main jobs. The first job is taking the Request sent from the client, and the second job is sending the request to the message queue. So developers don’t need to implement too many details about their experiments logics in API layer. All they need to do are designing the endpoints and assigning the message queues. So Pushkin-API provides some useful methods, which will simplify the operation of the developer’s job.

For example, developers can use setPass() method to assign which HTTP request to which message queue by giving some simple arguments. They can also use setDirectUse() if there is no need to use the rpc and message queue in their controller design. Pushkin also provides a quite useful method setDefaultPasses() to provide a typical controller design of experiments, which only need some message queue arguments.

setPass

	Arguments:

	
	route : string

The API endpoint that this pass applies to.

	rpcMethod : string

What method to request the worker to perform.

	queue : string

The RabbitMQ queue via which to send this pass.

	httpMethod : string

The http method this endpoint will listen on.

Returns: None

When an httpmethod is send to /api/myexp/controllermountpath/route, send an RPC call of rpcMethod through queue to a worker listening on the backend. This makes is easy for worker methods to be mapped to API endpoint URLS. When attached to a core API, this controller endpoint returns the data sent back by the worker to the client.

setDefaultPasses

	Arguments:

	
	read queue : string

Name of RabbitMQ read queue to use. Not persistent.

	write queue : string

Name of RabbitMQ write queue to use. Persistent.

	task queue : string

Name of RabbitMQ task queue to use. Not persistent.

Returns: None

Enable the default endpoints a simple experiment would use. This makes it possible to use the default Pushkin Client calls. The default endpoints are

	‘/startExperiment’, ‘startExperiment’, taskQueue, ‘post’

	‘/getStimuli’, ‘getStimuli’, readQueue, ‘post’

	‘/metaResponse’, ‘insertMetaResponse’, writeQueue, ‘post’

	‘/stimulusResponse’, ‘insertStimulusResponse’, writeQueue, ‘post’

	‘/endExperiment’, ‘endExperiment’, taskQueue, ‘post’

setDirectUse

	Arguments:

	
	route : string

The API endpoint that this use applies to.

	handler : function

Function to call when this endpoint is hit.

	httpMethod : string

The http method this endpoint will listen on.

Returns: None

Applies this function to an API endpoint. The handler function is directly attached to an Express Router and should therefore take three arguments for the request, response, and next paramaters respectively.

getConnFunction

Arguments: None

Returns: A function that takes a connection obj as the argument and will return a router/controller. This is the API of pushkin to handle the request to the current endpoint. The returned router/controller will be used as the callback argument of the app.use([path,] callback [, callback...])

Use this methods to get the function and take a message queue connection as the argument, then you can get the returned controller, which can be used as the argument of useController method in``Core API`` section. This method is usually used in Core-API part, usePushkinController method. When it gets the Pushkin controller, call this function with a message queue connection to finally get the Express router/controller.

Core API

The Core API provides some methods which Pushkin can use to load users’s controllers. It will initilize the controllers and the connections with message queues, set up multiple middlewares, and start the server. The Core API of Pushkin works like this:

import pushkin from 'pushkin-api';

const port = 3000;
const amqpAddress = 'amqp://localhost:5672';

const api = new pushkin.API(port, amqpAddress);

api.init()
 .then(() => {
 const controllersFile = path.join(__dirname, 'controllers.json');
 const controllers = JSON.parse(fs.readFileSync(controllersFile));
 controllers.forEach(controller => {
 const mountPath = path.join('/api/', controller.mountPath);
 const contrModule = require(controller.name);
 console.log(contrModule);
 api.usePushkinController(mountPath, contrModule);
 });
 api.start();
 })
 .catch(console.error);

The first line imports the API and the following three create an api. After executing api.init(), the message queue will be connected and if it succeeds, the Promise it returned will be resolved and the controllers that users build will be loaded and used as the middleware by the Express App. Finally when the start()``method is called, the Express App will listen to the given port, and the server starts. The port is default to ``3000 and the amqpAddress is default to amqp://localhost:5672.

The Core-API part‘s main jobs are taking the controllers the developers build, using it in Express App, and starting the server. The processes are quite standardized. When developers finish their design of controllers, they can require the controllers as modules then use usePushkinController() method to actually use the controllers in their server. Pushkin will take charge of packaging the custom experiments.

init

Arguments: None

Returns: Promise, in which the connection to message queue is built. Once the connection succeeds, the Promise will be resolved and developers can define what to do next.

useController

	Arguments:

	
	route : string

The API endpoint that this use applies to.

	controller : express.router

The middleware function that can be used by Express App to handle the HTTP request.

Returns: None

An encapsulated method of Express app.use(route, controller). Use it to add controller/request handling method to certain endpoint.

usePushkinController

	Arguments:

	
	route : string

The API endpoint that this use applies to.

	pushkinController : ControllerBuilder

The controller created by users using Controller Builder. After users build their custom controllers in their experiments, the pushkin will package them under the pushkin prep command.

Returns: None

The Pushkin will package the experiments that users develop and move it to ./pushkin. For the API part, the pushkin will load and require the experiment’s controllers. With this method, the Pushkin-API will nest the Express router app for this experiment at the route /api/[exp], where [exp] is the path for the experiment in question.

start

Arguments: None

Returns: None

Start the server and listen to the given port.

Pushkin CLI

The Pushkin command-line package is available via NPM. We highly recommend a global install in order to make working with Pushkin projects as easy as possible:

$ npm install -g pushkin-cli

Any subcommand that affects a specific project must be run from a folder inside the project you wish to modify.

The CLI has the following subcommands:

site

Syntax: pushkin site

Options: list

Syntax: pushkin site list.

Returns a list of available site templates.

Options: [template]

Syntax: pushkin site default.

Downloads template site of type template into the current working directory. The example above retrieves the “default” template.

experiment

Syntax: pushkin experiment

Options: list

Syntax: pushkin experiment list.

Returns a list of available experiment templates.

Options: [template]

Syntax: pushkin experiment basic.

Downloads experiment templateof type template into the experiments folder of your project. The example above retrieves the “default” template.

setupdb

Syntax: pushkin setupdb

Runs migrations and seeds for experiments. Ensures experiments using the same database (as defined in pushkin.yaml) are migrated at the same time to avoid errors with the knex_migrations table.

prep

Syntax: pushkin prep

Run inside a Pushkin project to prepare Pushkin to be run. Packages generated by calling npm pack inside each experiment’s web page and api controllers directories are moved to the core Pushkin code, installed there, and linked to the core code. Previous modules are uninstalled and removed.

Details

The code for prep is a bit convoluted (sorry). It loops through each experiment in the experiments folder (as defined by pushkin.yaml). For each experiment, it does thie following:

	It compiles and then tarballs the api controllers. These are moved to pushkin/api/tempPackages. This package is then added as a local package to pushkin/api/package.json, which allows them to be called during production.

	It compiles the worker and then builds a docker image for it. It is then added to docker-compose.dev.yml so that docker knows to include it when the website is built.

	It compiles and tarballs web page and moves it to pushkin/front-end/tempPackages. This package is then added as a local package to pushkin/front-end/tempPackages.

Finally, it updates pushkin/front-end/src/experiments.js to list each experiment, along with key information from the experiment’s config file. This will be read by the front end to build the list of experiments to display to potential participants.

Note that before any of this happens, prep actually goes through and deletes all old tempPackages, cleans up the package.jsons and docker-compose-dev.yml and empties experiments.js. Thus, to delete an experiment, all you have to do is delete it’s folder from the experiment folder. (Of course, that won’t get rid of the docker image for the worker, so you’ll need to clean those up by hand periodically.)

dev

Syntax: pushkin dev

Start the development server. This just runs docker-compose -f pushkin/docker-compose.dev.yml up --build --remove-orphans;, saving you the trouble of remembering the syntax. Unfortunately, you also don’t see any of the output from docker, so if there are errors, you won’t know.

Pushkin Client

The Pushkin client is available on NPM under pushkin-client. It should be instantiated once imported into a web page:

import pushkinClient from 'pushkin-client';
const pushkin = new pushkinClient();

The module has the following methods:

connect

	Arguments:

	
	API URL : string

Location of this experiment’s API endpoint.

Returns: Promise. Resolves on successful connection.

loadScript

	Arguments:

	
	URL : string

URL of a script to load

Returns: Promise. Resolves upon successfully loading the script.

Useful for loading external jsPsych plugins from a CDN. Scripts are reloaded if already present in the DOM, making sure they run again if a page changes.

loadScripts

	Arguments:

	
	URLs : string array

URLs to load.

Returns: Promise. Resolves upon successfully loading all scripts.

A convenience function. Uses loadScript and Promise.all in the backend.

prepExperimentRun

Arguments: None

Returns: Promise. Resolves upon affirmation.

Sends a POST request to [expapi]/startExperiment to allow the backend to prepare stimuli for the experiment, if need be. Depends on defaults being enable in the experiment’s API and worker.

getAllStimuli

Arguments: None

Returns: Promise. Resolves to an array of jsPsych stimuli.

Obtains the stimuli for this experiment in one request. Depends on defaults being enable in the experiment’s API and worker.

setSaveAfterEachStimulus

	Arguments:

	
	jsPsych stimuli : object array

Adds the on_finish property to each stimulus and sets it to call saveStimulusResponse.

Returns: Modified object array of jsPsych stimuli.

saveStimulusResponse

	Arguments:

	
	jsPych onfinish data : { user_id : int, … }

Data to be saved in the database under user_id. Posted to [expapi]/stimulusResponse.

Returns: Promise. Resolves upon successful database save.

Likely not wanted to be invoked directly by most users. Easiest to use if added to jsPsych’s on_finish function for each timeline variable.

insertMetaResponse

	Arguments:

	
	jsPych onfinish data : { user_id : int, … }

Returns: Promise. Resolves on successful connection.

endExperiment

Arguments: None

Returns: Promise. Reolves upon successfully notifying the worker.

Notify the worker that the experiment has ended and it can stop preparing for future stimuli. This should probably be called whenever the user leaves a page in the middle of an experiment as well.

customApiCall

	Arguments:

	
	path : string

URL of API endpoint to send this call to.

	data : object

Data to send to the API endpoint.

	httpMethod : string (optional)

A lowercase string of an http method to call the endpoint, such as “get” or “put”.

Returns: Promise. Resolves with response data.

Simplifies calls to custom API endpoints.

Local Databases for Testing

The Pushkin CLI command pushkin init automatically creates a Postgres database for testing (test_db). If needed, you can create additional databases for local testing.

Adding local database to Docker-Compose

First, you will need to add the database service to docker-compose.dev.yml. Here, we have added a second database in addition to test_db:

test_db:
 image: 'postgres:11'
 ports:
 - '5432:5432'
 volumes:
 - 'test_db_volume:/var/lib/postgresql/data'
second_db:
 image: 'postgres:11'
 ports:
 - '5432:5432'
 volumes:
 - 'second_db_volume:/var/lib/postgresql/data'

Here, this is another standard Postgres database using the public image postgres:11. The port settings are also adjusted. We’ve chosen to put the two databases on different volumes. For more information on docker volumes, see here: Docker_volumes [https://docs.docker.com/storage/volumes/] . For general information on docker-compose files, see: Docker_Compose [https://docs.docker.com/compose/compose-file/] .

Now launch this image:

Setting up the database

So far, we’ve set up a database service. We don’t have an actual database. Assuming your image is up and running (see previous step), you can set up a database as follows:

> docker-compose -f pushkin/docker-compose.dev.yml exec -T second_db psql -U USER -c "create database MYDB"

Replace USER with whatever you’d like the username for the database to be. Replace MYDB with whatever you’d like the name of the database to be. The password defaults to blank. Since this is a local test database, and since actually setting up a password is somewhat complicated, we recommend you stick with that default.

Adding local database to Pushkin.yaml

The Pushkin CLI also needs to know about your databases. We list them in the pushkin.yaml config file. Below, we’ve added the new database to the bottom.

databases:
 localtestdb:
 user: 'postgres'
 pass: ''
 url: 'localhost'
 name: 'test_db'
 myotherdb:
 user: 'USER'
 pass: ''
 url: 'localhost'
 name: 'MYDB'

Again, swtich USER and MYDB for whatever you actually used.

Telling your experiments which database to use

Each experiment has its own config.yaml for your experiment. Set the database you wish to use:

...above code...
database: 'myotherdb'

Note that you should use the name of the database as defined in pushkin.yaml. Do not use the name of the docker container (second_db) or the name of the database on that docker container (MYDB).

There’s no limit to the number of experiments that can use the same database.

Remote Databases for Production

TODO

Local Databases for Testing

The Pushkin CLI command pushkin init automatically creates a Postgres database for testing (test_db). If needed, you can create additional databases for local testing.

Adding local database to Docker-Compose

First, you will need to add the database service to docker-compose.dev.yml. Here, we have added a second database in addition to test_db:

test_db:
 image: 'postgres:11'
 ports:
 - '5432:5432'
 volumes:
 - 'test_db_volume:/var/lib/postgresql/data'
second_db:
 image: 'postgres:11'
 ports:
 - '5432:5432'
 volumes:
 - 'second_db_volume:/var/lib/postgresql/data'

Here, this is another standard Postgres database using the public image postgres:11. The port settings are also adjusted. We’ve chosen to put the two databases on different volumes. For more information on docker volumes, see here: Docker_volumes [https://docs.docker.com/storage/volumes/] . For general information on docker-compose files, see: Docker_Compose [https://docs.docker.com/compose/compose-file/] .

Now launch this image:

Setting up the database

So far, we’ve set up a database service. We don’t have an actual database. Assuming your image is up and running (see previous step), you can set up a database as follows:

> docker-compose -f pushkin/docker-compose.dev.yml exec -T second_db psql -U USER -c "create database MYDB"

Replace USER with whatever you’d like the username for the database to be. Replace MYDB with whatever you’d like the name of the database to be. The password defaults to blank. Since this is a local test database, and since actually setting up a password is somewhat complicated, we recommend you stick with that default.

Adding local database to Pushkin.yaml

The Pushkin CLI also needs to know about your databases. We list them in the pushkin.yaml config file. Below, we’ve added the new database to the bottom.

databases:
 localtestdb:
 user: 'postgres'
 pass: ''
 url: 'localhost'
 name: 'test_db'
 myotherdb:
 user: 'USER'
 pass: ''
 url: 'localhost'
 name: 'MYDB'

Again, swtich USER and MYDB for whatever you actually used.

Telling your experiments which database to use

Each experiment has its own config.yaml for your experiment. Set the database you wish to use:

...above code...
database: 'myotherdb'

Note that you should use the name of the database as defined in pushkin.yaml. Do not use the name of the docker container (second_db) or the name of the database on that docker container (MYDB).

There’s no limit to the number of experiments that can use the same database.

Remote Databases for Production

TODO

Deployment

These pages explain deployment in significantly more detail.

Local Deployment

FUBAR

DEV: Local Deployment Stack

In the official website templates, the front end app was created with create-react-app <https://github.com/facebook/create-react-app>. This handle toolbox handles babel and webpack so that you don’t have to.

By default, create-react-app expects local tests to listen on port 3000. However, this is the port that our API uses. Thus, you will see that the custom start script in package.json requests port 80:

:: javascript

	“scripts”: {

	“start”: “PORT=80 react-scripts start”,
“build”: “react-scripts build”,
“test”: “react-scripts test”,
“eject”: “react-scripts eject”

},

The docker-compose.dev.yml file likewise specifies that port 80 is open.

:: json

	server:

	build: ./front-end
environment:

API_PORT: ‘3000’

	ports:

	
	‘80:80’

	‘433:433’

	links:

	
	api

Deploying to AWS

Setting up AWS

Requirements

These instructions assume you have:

	a working version of Pushkin (see Quickstart)

	access to AWS

	a DockerHub account

Define security groups

You’ll need two security groups: one for rancher and one for the databases.

The rancher EC2 security group should be open to all traffic on ports

	Port

	Protocol

	80

	TCP

	443

	TCP

	8080

	TCP

	500

	UDP

	4500

	UDP

This is for normal web access, the rancher management web UI, and the Rancher host infrastructure.
The database security group should be open to all TCP traffic on ports 3306 (MySQL) and 5432 (Postgres).

Instructions on creating an EC2-security-group [https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html] can be found on AWS. * Note: Link for linux instances *

Instructions on creating a database-security-group [https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.RDSSecurityGroups.html] can be found on AWS.

Get an EC2

The most straightforward way to do this is to use the official Rancher OS already on Amazon. Create it with the AMI from the list here appropriate to your region.

Instructions on creating EC2 [https://docs.aws.amazon.com/efs/latest/ug/getting-started.html] instances can be found on AWS.

Get databases (RDS)

You’ll need three databases. One’s for rancher, one’s for transactions, and one’s for stored data, which we will refer to as Main DB. Launch all three with the database security group created previously. t2.medium is the recommended size for all of them.

	Rancher DB: MySQL

	Transaction DB: Postgres

	Main DB: Postgres

Instructions on creating RDS [https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_GettingStarted.html] Instances can be found on AWS.

Prepare the transactions database

The transaction database serves as a running log of queries to the Main DB, recording all activity which passes through it.

Connect to the transactions database just created using any Postgres client and run the following code to make a transactions table:

create table transactions (
 id SERIAL PRIMARY KEY,
 query TEXT not null,
 bindings TEXT
)

Get an S3 Bucket

Next, you’ll need an S3 bucket for file backups, data storage, and retrieval. Create a new S3 bucket with open permissions for all traffic.

Instructions on creating S3 [https://docs.aws.amazon.com/quickstarts/latest/s3backup/welcome.html] buckets can be found on AWS.

Get CloudFront

Now, you will need an AWS CloudFront distribution. CloudFront connects to an S3 bucket, and serves to distribute the contents of that bucket, which could include pickled objects, data-sets, and other resources, to any web application which possesses a CloudFront URL.

This URL is provided to Pushkin in the .env file located in the root folder.

Instructions on creating CloudFront [https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/GettingStarted.html] distributions can be found on AWS.

Get AWS CLI Tools

Follow Amazon’s instructions for installing the AWS CLI here [https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html]. Alternatively, you could use Homebrew [https://brew.sh] if you’re on a Mac.

Set up IAM Users and Roles

You will need some way of securely controlling access to AWS services and resources. This can be done by setting up IAM roles and users, which allows other developers and contributers to access your resources without needing to share access keys or passwords.

More information on IAM users can be found on Amazon’s website [https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html]

Preparing Pushkin to Deploy

Depending on how you’ve set up Pushkin and your experiments, some of the database credentials may have to be changed. If your experiments are using the local testing database, make sure to change connection information in the experiments’ config.yaml files.

You’ll also likely want to add a new database in the main pushkin.yaml file. This will let you setup the database for your experiment with the CLI command. See adding_a_database in the getting started guide for reference.

FUBAR

Developing with Pushkin

Pushkin is 100% open-source. We love it when people come together to help fix bugs, build features, and make Pushkin better for everyone. If you’d like to contribute, feel free to open a pull request. The Pushkin project is split into several repos, each corresponding to a an NPM module. Issues and general project direction is tracked via GitHub’s project boards and issues. An example of all of them working together is available via the pushkin generate command. Below is a general overview.

1. Client [https://github.com/pushkin-consortium/pushkin-client] (Docs)
A module that provides simplified methods for making calls to a Pushkin API and unpacking data sent back from a worker. Note that built-in functions assume the API has corresponding default routes enabled to handle such requests.

2. API [https://github.com/pushkin-consortium/pushkin-api] (Docs)
Essentially a mini-server designed with the use case of interfacing between Pushkin Client and Pushkin Worker via RabbitMQ.

3. CLI [https://github.com/pushkin-consortium/pushkin-cli] (Docs)
Installable via NPM. Adds a pushkin command to the path when installed globally and makes working with Pushkin much easier.

4. Worker [https://github.com/pushkin-consortium/pushkin-worker/] (Docs)
Receives messages from RabbitMQ and runs whatever functionality it’s told to run, sending the result back through the queue it came from. Designed to be on the receiving end of a Pushkin API. Comes with built-in simple functions that most users will probably want, like “getAllStimuli”.

5. JSPsych [https://github.com/pushkin-consortium/pushkin-jspsych/] (Docs)
The Pushkin JSPsych repo simply makes a few small changes to the official JSPsych library so that it can be bundled together as if it’s an NPM module. In order for it to be globally accessible to plugins as they expect, the import must be assigned to window.jsPsych.

Getting Started on Development

Understanding the Front End

	Basics. You’ll want a reasonably thorough grounding in Javascript and React. The tutorials in Code Academy are pretty good, though not free.

	Pushkin is a Single Page Application (SPA) based on React. For a gentle introduction to this stack, read this tutorial [https://auth0.com/blog/beyond-create-react-app-react-router-redux-saga-and-more/#Securing-Your-React-Application], which also describes incorporating authentication with auth0. Note that this tutorial is slightly out of date in that auth0 now uses auth0-spa-js for SPAs, and create-react-app suggests using function components rather than class components.

	To fill in your understanding of React, we recommend the two-part Codecademy.com Learn ReactJS [https://www.codecademy.com/learn/react-101] course.

	Next, you probably want to learn more about routing using React-Router. We use v5, which is nearly identical to v4 [https://reacttraining.com/blog/react-router-v5/]. If you read up on React Router, you’ll see a lot of discussion of dynamic routing [https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/guides/philosophy.md], though you can probably safely ignore this. One of the better tutorials available is here [https://auth0.com/blog/react-router-4-practical-tutorial/], though it’s a bit short.

	You’ll also want to understand Redux better. Redux is used to keep track of application-level state variables. For Pushkin, a primary usecase is keeping track of subject IDs. The best tutorial we’ve found for React-Redux is the official one [https://redux.js.org/basics/basic-tutorial]. Note that it’s a little out-of-date with regards to use of object spread syntax (which is now supported by Node) and with how to handle asynchronous requests: we’ll be using redux sagas [https://redux-saga.js.org/docs/introduction/] for that, so read up on that as well. A good place to start on why redux sagas are worth using is here [https://engineering.universe.com/what-is-redux-saga-c1252fc2f4d1].

	At this point, we recommend going back through the tutorial in #2 above.

Understanding Docker

There are a number of tutorials on Docker. For ongoing use, this cheatsheet [https://www.digitalocean.com/community/tutorials/how-to-remove-docker-images-containers-and-volumes] is pretty useful.

Testing Pushkin Modules Locally

Currently, the most convenient way to test new version of Pushkin modules locally is getting the tarball of the pushkin modules you modified and putting it into the node test project folder.

	If you have a node project for test the new version of Pushkin modules(pushkin-api, pushkin-client, pushkin-worker, etc.), create a folder in the project dir named “testPackages”.

	Get the tarball of the pushkin modules to be tested, like “pushkin-api-1.2.0.tgz”. Put this tarball into the testPackages folder.

	Modify the package.json file in the project dir like this:

"dependencies": {
 "pushkin-api": "file:testPackages/pushkin-api-1.2.0.tgz",

 }

That is, modify the path of the Pushkin module to the local test version, so that the npm will find it locally rather than the npm library

	npm install all the dependencies, then you can write the test codes.

 Note: This will need to be updated once we have more than one stub experiment type.

Stub experiment

pushkin generate newExp will generate a new stub experiment called newExp. It does this by running index.js in

└── pushkin-cli
 └── generate

This begins by copying the files in

└── pushkin-cli
 └── generate
 └── generateFiles

to your experiments folder. In the process, it renames any folders or files that need to be renamed to match the name of your experiment (in our example, newExp).

Then, it runs npm install in three directories: api controllers, worker, and web page. The first two directories are essentially empty wrappers for a package.json, which tells npm to download the latest versions of pushkin-api and pushkin-worker, respectively. The final directory has some stub code for the experiment web page, plus a package.json requesting pushkin-client and the pushkin-compatible version of jsPsych (pushkin-jspsych).

There is one extra step for the worker, which is running npm run build. This runs a script defined in the pushkin-worker package.json. This asks babel to compile the worker files into backwards compatible javascript. (Given that the worker is going to run on a Node server, this is probably not necessary.)

The pushkin prep command

In order to simplify maintaining a Pushkin website, all code for a single experiment is kept in a folder in the experiments directory. For production, various bits of code need to go different places. Pushkin prep puts those files and information where they need to go. It also simplifies removing an experiment. When you don’t want an experiment on the website anymore, simply delete its folder from the experiments directory and redeploy.

The code for prep can be found in pushkin-cli/src/commands/prep/index.js. There is inline documentation. Below, we provide an overview of what prep does.

	Prep deletes the experiments.js and controllers.json files (see website_controlersJSON_ and website_experimentsJS_). It deletes temporary files stored in api and front-end. It also removes the experiment workers from the core docker-compose.dev.yml.

	npm pack is used to turn each API controller into a tarball. Those tarballs are stored in api/tempPackages. The names of these controllers are added to controllers.json.

	npm pack is used to turn each experiment into a tarball. Those tarballs are stored in front-end/tempPackages. The names of the experiments are added to experiments.js.

	docker build is used to build an image for each experiment’s workers. These are added to the core docker-compose.dev.yml.

 The API provides an intermediary between the code running in the subject’s browser and the Pushkin backend server (database, workers, etc.).

A standard Pushkin site will have a folder /api/, which consists of a Docker container, which holds a node program. Out of the box, the package.json is quite simple:

{
 "name": "my-pushkin-api",
 "version": "1.0.0",
 "description": "An API for Pushkin",
 "main": "build/index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1",
 "build": "rm -rf build/* && babel src -d build && cp src/controllers.json build/",
 "start": "node build/index.js"
 },
 "author": "",
 "license": "MIT",
 "dependencies": {
 "pushkin-api": "0.0.16"
 },
 "devDependencies": {
 "@babel/cli": "^7.2.3",
 "@babel/core": "^7.2.2",
 "@babel/preset-env": "^7.3.1"
 }
}

The only important dependency is pushkin-api (pushkin_api_), which comes with some convenience classes and functions that makes extending the API for a new experiment staightforward. For clarity, we will call the node program contained in /api/ that depends on pushkin-api the “core API”. If there aren’t any experiments, the core API doesn’t do much. See the out-of-the-box /api/src/index.js:

import pushkin from 'pushkin-api';
import fs from 'fs';
import path from 'path';

const port = process.env.PORT || 3000;
const amqpAddress = process.env.AMQP_ADDRESS || 'amqp://localhost:5672';

const api = new pushkin.API(port, amqpAddress);

api.init()
 .then(() => {
 const controllersFile = path.join(__dirname, 'controllers.json');
 const controllers = JSON.parse(fs.readFileSync(controllersFile));
 controllers.forEach(controller => {
 const mountPath = path.join('/api/', controller.mountPath);
 const contrModule = require(controller.name);
 console.log(contrModule);
 api.usePushkinController(mountPath, contrModule);
 });
 api.start();
 })
 .catch(console.error);

By using the pushkin-api helper functions, this code starts an Express router app. For each experiment in /api/src/controllers.json, it nests a router at /api/[exp], where [exp] is the path for the experiment in question as defined in /api/src/controllers.json. Thus, the URL /api/myexp/startExperiment will be handled by the API for myexp, serving whatever that API returns for /startExperiment.

Experiment-specific API code

Each experiment should have an /api controllers folder that contains the Express app for that experiment. Again, this is simplified by making use of convenience functions provided by pushkin-api. The critical code is in /api controllers/src/index.js. For a simple experiment, this may not do much more than call pushkin-api:

import pushkin from 'pushkin-api';

const db_read_queue = 'exp1_quiz_dbread'; // simple endpoints
const db_write_queue = 'exp1_quiz_dbwrite'; // simple save endpoints (durable/persistent)
const task_queue = 'exp1_quiz_taskworker'; // for stuff that might need preprocessing

const myController = new pushkin.ControllerBuilder();
myController.setDefaultPasses(db_read_queue, db_write_queue, task_queue);

module.exports = myController;

This code makes use of the Pushkin controller builder, which allows you to put together an Express app backend with minimal code. Because all experiments (presumably) read and write from databases and send tasks to a worker, these endpoints are already set by default. For those interested in the details, these are defined in pushkin-api/src/ControllerBuilder.js:

setDefaultPasses(readQueue, writeQueue, taskQueue) {
 this.setPass('/startExperiment', 'startExperiment', taskQueue, 'post');
 this.setPass('/getStimuli', 'getStimuli', readQueue, 'post');
 this.setPass('/metaResponse', 'insertMetaResponse', writeQueue, 'post');
 this.setPass('/stimulusResponse', 'insertStimulusResponse', writeQueue, 'post');
 this.setPass('/endExperiment', 'endExperiment', taskQueue, 'post');
}

To use these, all you need to do is set the names of the queues:

myController.setDefaultPasses(db_read_queue, db_write_queue, task_queue);

Adding custom endpoints

Adding custom endpoints is straightforward. Here is an example of a custom passthrough endpoint /postResults (it passes some data along to a worker):

import pushkin from 'pushkin-api';

const db_read_queue = 'trial_quiz_dbread'; // simple endpoints
const db_write_queue = 'trial_quiz_dbwrite'; // simple save endpoints (durable/persistent)
const task_queue = 'trial_quiz_taskworker'; // for stuff that might need preprocessing

const myController = new pushkin.ControllerBuilder();
myController.setDefaultPasses(db_read_queue, db_write_queue, task_queue);
myController.setCustomPass('/postResults', 'postResults', db_write_queue, 'post'); // eslint-disable-line

module.exports = myController;

More complex custom endpoints can be created using the pushkin-api method setDirectUse. The code for that method is shown below:

// allow users to set their own custom api endpoints that don't just pass things along
setDirectUse(route, handler, httpMethodOption) {
 const httpMethod = httpMethodOption == undefined ? 'post' : httpMethodOption;
 this.directUses.push({ httpMethod, route, handler });
}

pushkin-api

For more information on the pushkin-api package and available functions, see pushkin_api_.

Experiment Config Files

The config file provides information to the rest of Pushkin about the experiment. Below is a sample of what one might look like.

experimentName: &fullName 'pushkintemplate Experiment'
shortName: &shortName 'pushkintemplate'
apiControllers:
 - mountPath: *shortName
 location: 'api controllers'
 name: 'mycontroller'
worker:
 location: 'worker'
 service:
 image: *shortName
 links:
 - message-queue
 - test_db
 environment:
 - "AMQP_ADDRESS=amqp://message-queue:5672"
 - "DB_USER=postgres"
 - "DB_PASS="
 - "DB_URL=test_db"
 - "DB_NAME=test_db"
webPage:
 location: 'web page'
migrations:
 location: 'migrations'
seeds:
 location: 'seeds'
database: 'localtestdb'
logo: 'logo512.png'
tagline: 'Be a citizen scientist! Try this quiz.'
duration: ''

Each of the above fields is explained in detail below.

experimentName

The full name of your experiment. This is used as a display name on the website to users.

shortName

This is a short, more computer friendly version of you experiment’s name. It should be unique as it is used as the folder name in the experiments folder.

apiControllers

Note that this is an array. As many API controllers can be used as needed.

mountPath

URL this controller’s endpoint will be available at. Full path is /api/[mountPath].

location

Path relative to config file the CLI will look for this module in.

name

Used in logs.

worker

location

Path relative to config file the CLI will look for this module in.

service

This section is appended to Pushkin’s core Docker Compose file. Note that message-queue is a requirement. If you’re not using the local test database, test_db is not necessary. Database connections credentials should be unique to every user. The defaults are shown here for the testing database.

webPage

location

Path relative to config file the CLI will look for this module in.

migrations

location

Path relative to config file the CLI will look for these files.

seeds

location

Path relative to config file the CLI will look for these files. If you aren’t seeding a database table, set this to ''. Otherwise, if the folder pointed to by location is empty, pushkin setupdb will fail.

database

A reference to a key defined in the core Pushkin config file. Experiments can share databases. The CLI will use this database to migrate and seed experiment data files. It is not used as connection information for any of the modules running the experiment, since these may or may not be inside containers and cannot use the same connection details as the CLI.

logo, tagline, duration, other

You may find it useful to include information about your experiment here that can be used by front-end to describe the experiment to potential subjects. For instance, the default pushkin site template uses logo, tagline, and duration, which are self-explanatory. Note that no path is given for the logo because the default pushkin site template assumes this is in front-end/src/img.

Experiment Migrations

Pushkin uses knex [https://knexjs.org] to manage database tables. Files inside the migrations directory are migration files that describe how to setup and take down the tables needed for an experiment. The CLI handles the details of connecting to and executing the appropriate order of commands required to setup all experiment’s tables. Once the table structure has been created, seeding is used to populate the database with experiment data, such as stimuli.

When making a new experiment with new migrations, it is helpful to prefix the filenames with numbers in order to get the order right (you want tables that are going to be referenced by other tables to be created first, so giving them an alphabetically earlier filename is helpful).

Experiment Seeds

Pushkin uses knex [https://knexjs.org] to facilitate moving data into an experiment’s tables in a database. Files inside the seeds directory are seed files containing the data to be moved and directions on where to put it. Each experiment’s seed files should align with the strucutre defined in its migration files. The CLI handles the execution of these files.

Experiment Web Page Component

This houses the front-end component of an experiment. A package.json file describes the data here, which is packaged by the CLI and attached to the core website under the location defined by the experiment’s config file. Pushkin uses React for the front end. Experiment web pages are mounted as React components and given the full size of the screen.

Recommended Structure

As long as the webpage folder contains an ‘index.js’ file that includes all your experiment code, you should be set. It is not even necessary for this to use jsPsych. However, we recommend building on top of an experiment template. Most have the same structure, including in the /src folder two files (experiments.js and index.js) and a folder (/assets). experiments.js contains a jsPsych timeline. index.js is essentially a wrapper around the timeline. The core functionality of interest is here:

 async startExperiment() {
 this.setState({ experimentStarted: true });

 jsPsych.data.addProperties({user_id: this.props.userID}); //See https://www.jspsych.org/core_library/jspsych-data/#jspsychdataaddproperties
 await pushkin.connect('/api/pushkintemplate');
 await pushkin.prepExperimentRun(this.props.userID);
 await pushkin.loadScripts([
 'https://cdn.jsdelivr.net/gh/jspsych/jsPsych@6.0.4/plugins/jspsych-html-keyboard-response.js',
]);
 const timeline = pushkin.setSaveAfterEachStimulus(timeline_basic);
 await jsPsych.init({
 display_element: document.getElementById('jsPsychTarget'),
 timeline: timeline,
 on_finish: this.endExperiment.bind(this),
 });

 document.getElementById('jsPsychTarget').focus();
 this.setState({ loading: false });
}

endExperiment() {
 document.getElementById("jsPsychTarget").innerHTML = "Thank you for participating!";
}

Any jsPsych plugins you need to use should be listed inside pushkin.loadScripts(). All jsPsych plugins should be available through jsdelivr.net. It is fairly self-explanatory: just edit the URL to indicate the jsPsych version and the name of the plugin.

Another line of code worth noting is const timeline = pushkin.setSaveAfterEachStimulus(timeline_basic);. This uses a helper function from the pushkin-client to save data after each stimulus. This is generally good practice. You could of course write this into the timeline, but this helper function saves some typing.

Finally, when the timeline finishes endExperiment() will be called. In the template, this simply adds a “Thank you for participating” message. If one were providing more complex feedback, that could be handled in this function.

Assets

The assets folder should contain any static assets that will be imported by React.

Note that this method of importation won’t work for files referenced by jsPsych. jsPsych timelines are not compiled by React, and so by the time jsPsych runs, the files on the server are no longer accessible. However, create-react-app provides a nifty workaround: process.env.PUBLIC_URL will point to the folder /front-end/src/public during runtime. This, this jsPsych snippet will work, so long as the PNGs in question are in the public folder:

Customizing the client

If you need to extend the client with custom API calls, etc., you should extend the defaultClient class. For instance, rather than loading the pushkin client directly:

You would first extend it, adding any additional methods you need:

Experiment Worker Component

Workers handle the most complex aspect of a Pushkin experiment and different types of experiments could need workers with very different functionalities. Pushkin provides a simple template written in Javascript to start with.

The job of a worker is to receive messages via RabbitMQ that (usually) come from an API controller. It looks up the appropriate information in the database and returns it to the requester. Workers are also the component that is responsible for implementating machine learning, as having direct access to this data allows it to make live, dynamic decisions during an experiment like what stimuli to serve next or predictions about a subject’s next answers.

Experiment Structure

From the perspective of the web server, a Pushkin experiment involves a number of distinct elements. There is the HTML/Javascript for the stimulus display and response recording (the “front end”). There is the database, where data are stored. There is the worker, which handles reading and writing from the database (plus potentially many other behind-the-scenes work!). Finally, there is the API, which communicates between the front end and the worker.

For convenience, all the code is kept in the experiments folder as defined in pushkin.yaml. The CLI command prep_ automagically redistributes this code where it needs to go.

	Config File

	Experiment Web Page Component

	Recommended Structure

	Customizing the client

	Worker

	Migrations

	Seeds

Pushkin JSPsych

A slightly-modified version of the core jsPsych [https://github.com/jspsych/jsPsych] script available on NPM under pushkin-jspsych.

Global variables are removed and what would normally have been assigned to window.jsPsych is exported as the default export. It has all the same properties. It should be assigned to the window object by the page using it, like so:

import jsPsych from 'pushkin-jspsych';
window.jsPsych = jsPsych;

This prevents conflicts when mutliple pages are using different versions of jsPsych. It also allows plugins to be used without any modification needed to suit this version.

Maintenance

Learn how to maintain and troubleshoot Pushkin.

Logs

Logs for docker containers can be viewed by running:

docker logs [container]

where [container] is the name of the docker container you’d like to see logs of. Running containers and their names can be listed with:

docker ps

Quickstart

Creating a basic new Pushkin site

All instructions are for working on a Mac. If you figure out how to install Pushkin on Windows, please update the documentation and submit a pull request!

If you don’t have Homebrew [https://brew.sh/], install it. Then run the following:

$ brew install Node

Install the pushkin-cli package globally.

$ npm install -g pushkin-cli

Confirm that pushkin-cli is installed by running

$ pushkin --help

You should get a list of commands with some documentation for each. We’ll be going through the critical ones below.

Next, install Docker [https://docs.docker.com/install/].

Make sure Docker is running.

Then, open a terminal and move to an empty directory in which to setup Pushkin.

$ pushkin install site

You will be asked to select a site template to use. Choose ‘default’.

This sets up a skeleton website in the current folder and sets up a development database. Once that finishes, you should have a directory tree that looks
something like this:

├── experiments
├── pushkin
 ├── api
 ├── docker-compose.dev.yml
 ├── front-end
 └── util
└── pushkin.yaml

Most of the stuff in the pushkin folder won’t need to be edited at all,
with the exception of the website (in the front-end folder).

Making an Experiment

To create a new experiment from the boilerplate template Pushkin
provides, run

$ pushkin install experiment

Choose a ‘basic’ experiment. When prompted, name your experiment ‘Vocab’. Repeat the process to add ‘basic’ experiments called ‘Mind’ and ‘WhichEnglish’ as well.

This will create a new folder in the experiments directory like

└── vocab
 ├── api controllers
 ├── config.yaml
 ├── migrations
 ├── seeds
 ├── web page
 └── worker
└── mind
 ├── api controllers
 ├── config.yaml
 ├── migrations
 ├── seeds
 ├── web page
 └── worker
└── whichenglish
 ├── api controllers
 ├── config.yaml
 ├── migrations
 ├── seeds
 ├── web page
 └── worker

Each folder in here contains something unique to each experiment.
There’s also a configuration file that allows us to define a full name
for the experiment and specify what database to use, among other things.

Keeping all the files for an experiment within the same root folder is convenient for
development, but not for actually deploying the website. To redistribute the experiment
files to the right places, run:

$ pushkin prep

Setting up logins

In config.js, located at ./pushkin/front-end/src, set useAuth to true or false depending on whether you want to have a login system or not. Note that you cannot use a forum without a login system:

useForum: false,
useAuth: false,
//Note that the forum won't work without authentication

By default, Pushkin authenticates users using Auth0 [http://auth0.com]. This provides many features and better security than could be managed otherwise. It is free for open source projects (contact sales@auth0.com); otherwise it can be fairly pricey if you are hoping for a lot of users. To set up Auth0, use the following directions. (Note that at some point, Auth0 will change up their website and these instructions may get out of date.)

	Go to auth0.com and create an Auth0 account.

	Go to the Applications section of the Auth0 dashboard and click Create Application.

	Give your application and a name. Select Single Page Web App as your application type. Click Create.

	Choose the Settings tab. In Allowed Callback URLs, add http://localhost/. In Allowed Logout URLs, add http://localhost. In Allowed Web Origins, also add http://localhost. Click the Save Changes button.

Note that these URLs are used for development. When you launch the live version of your website, you will need to add your public URLs. Repeat the instructions above, replacing http://localhost with https://YOUR-WEBSITE. For instance, for gameswithwords, the urls are https://gameswithwords.org and https://gameswithwords/callback.

	On the settings page, you will see a Domain (something like gameswithwords.auth0.com) and a Client ID. Edit config.js to match:

authDomain: '<YOUR_AUTH0_DOMAIN>',
authClientID: '<YOUR_AUTH0_CLIENT_ID>',

Local testing

Now, let’s look at your website! Make sure Docker is running, and then type

$ pushkin start;

Now browse to http://localhost to see the stub website.

When you are done looking at your website, stop it by running:

$ pushkin stop;

If you don’t do that, the web server will keep running in Docker until you quit Docker or restart.

Updating

Every time you update code or add an experiment, you’ll need to run pushkin prep again:

$ docker-compose -f pushkin/docker-compose.dev.yml start test_db
$ pushkin start

Starting over

The great thing about Docker is that it saves your work. (Read up on Docker to see what I mean.) The bad thing is that it saves your work. Simply editing your code locally may not change what Docker thinks the code is. So if you are updating something but it’s not showing up in your website or if you are getting error messages from Docker … ideally, you should read up on Docker. However, as a fail-safe, run pushkin kill to delete all your pushkin-specific code in Docker. Then just run pushkin prep again. This will take a while, but should address any Docker-specific problems. If you really need a fresh Docker install, run pushkin armageddon, which will completely clean Docker.

Templates

TBI

Deploying to AWS

TODO

 FUBAR

Experiment API Controllers Component

The API (pushkin_api_) provides an intermediary between the code running in the subject’s browser and the Pushkin backend server (database, workers, etc.). The API Controllers define a mapping between URLs and worker tasks. The stub experiment for a basic quiz named myexp will have a controller (experiments/myexp/api controllers/src/index.js) that looks like this:

import pushkin from 'pushkin-api';

const db_read_queue = 'myexp_quiz_dbread'; // simple endpoints
const db_write_queue = 'myexp_quiz_dbwrite'; // simple save endpoints (durable/persistent)
const task_queue = 'myexp_quiz_taskworker'; // for stuff that might need preprocessing

const myController = new pushkin.ControllerBuilder();
myController.setDefaultPasses(db_read_queue, db_write_queue, task_queue);
myController.setDirectUse('/status', (req, res, next) => res.send('up'), 'get'); // eslint-disable-line

module.exports = myController;

This code makes use of the Pushkin controller builder, which allows you to put together an Express app backend with minimal code. Because all experiments (presumably) read and write from databases and send tasks to a worker, these endpoints are already set by default. For those interested in the details, these are defined in pushkin-api/src/ControllerBuilder.js:

setDefaultPasses(readQueue, writeQueue, taskQueue) {
 this.setPass('/startExperiment', 'startExperiment', taskQueue, 'post');
 this.setPass('/getStimuli', 'getStimuli', readQueue, 'post');
 this.setPass('/metaResponse', 'insertMetaResponse', writeQueue, 'post');
 this.setPass('/stimulusResponse', 'insertStimulusResponse', writeQueue, 'post');
 this.setPass('/endExperiment', 'endExperiment', taskQueue, 'post');
}

Each of these has default abilities that can be customized as needed. For simple quizzes, this may not be necessary.

Additional endpoints can be defined. In the example above, we added an additional endpoint status.

For more on how to customize API controllers, see pushkin_api_.

Experiment Worker

In addition to an API, each experiment has (at least) one worker. The worker is a program that runs on the server and listens for requests from the API. By default, the worker comes equipped with methods to handle to handle the following five tasks: startExperiment, getStimuli, insertMetaResponse, insertStimulusResponse, and endExperiment. Whether these will actually do what you want for your experiment is another question. For more details, see pushkin_worker_.

Getting Started

	Quickstart
	Creating a basic new Pushkin site

	Making an Experiment

	Setting up logins

	Local testing

	Updating

	Starting over

	Templates

	Deploying to AWS

	Tutorial: Simple Experiment
	Initial code

	Move the timeline

	Import plugins

	Static assets

Summary of tutorial content

Pushkin’s modularity means that, in principle, you could probably use any javascript-based experiment engine to write your expeirments. However, we highly recommend using jsPsych [https://www.jspsych.org]. Pushkin has only been extensively tested with jsPsych, and all the documentation currently assumes you are using jsPsych.

The tutorial below starts with a simple lexical decision task written in vanilla jsPsych. The tutorial below explains how to modify this code to run on Pushkin.

If you are not familiar with jsPsych, please consult the documentation [https://www.jspsych.org] first. We recommend you also walk through some of the tutorials.

Initial code

Below, we will adapt a simple lexical decision experiment. The original code can be found here [https://github.com/jodeleeuw/bigcog-lexical-decision/]. This repository consists of the base jsPsych installation and a single HTML file:

<!DOCTYPE html>
<html>
 <head>
 <script src="jspsych/jspsych.js"></script>
 <script src="jspsych/plugins/jspsych-html-keyboard-response.js"></script>
 <link rel="stylesheet" href="jspsych/css/jspsych.css">
 <style>
 .fixation { border: 2px solid black; height: 100px; width: 200px; font-size: 24px; position: relative; margin: auto; }
 .fixation p { width: 100%; position: absolute; margin: 0.25em;}
 .fixation p.top { top: 0px; }
 .fixation p.bottom { bottom: 0px; }

 .correct { border-color: green;}
 .incorrect { border-color: red; }
 </style>
 </head>
 <body></body>
 <script>
 var timeline = [];

 var welcome = {
 type: 'html-keyboard-response',
 stimulus: '<p>Welcome to the experiment. Please press C to continue.</p>',
 choices: ['c']
 }

 timeline.push(welcome);

 var instructions = {
 type: 'html-keyboard-response',
 stimulus: '<p>You will see two sets of letters displayed in a box, like this:</p>'+
 '<div class="fixation"><p class="top">HELLO</p><p class="bottom">WORLD</p></div>'+
 '<p>Press Y if both sets are valid English words. Press N if one or both is not a word.</p>'+
 '<p>Press Y to continue.</p>',
 choices: ['y']
 }

 timeline.push(instructions);

 var instructions_2 = {
 type: 'html-keyboard-response',
 stimulus: '<p>In this case you would press N</p>'+
 '<div class="fixation"><p class="top">FOOB</p><p class="bottom">ARTIST</p></div>'+
 '<p>Press N to continue to the start of the experiment.</p>',
 choices: ['n']
 }

 timeline.push(instructions_2);

 var trials = [
 {word_1: 'SOCKS', word_2: 'SHOE', both_words: true, related: true},
 {word_1: 'SLOW', word_2: 'FAST', both_words: true, related: true},
 {word_1: 'QUEEN', word_2: 'KING', both_words: true, related: true},
 {word_1: 'LEAF', word_2: 'TREE', both_words: true, related: true},

 {word_1: 'SOCKS', word_2: 'TREE', both_words: true, related: false},
 {word_1: 'SLOW', word_2: 'SHOE', both_words: true, related: false},
 {word_1: 'QUEEN', word_2: 'FAST', both_words: true, related: false},
 {word_1: 'LEAF', word_2: 'KING', both_words: true, related: false},

 {word_1: 'AGAIN', word_2: 'PLAW', both_words: false, related: false},
 {word_1: 'BOARD', word_2: 'TRUDE', both_words: false, related: false},
 {word_1: 'LIBE', word_2: 'HAIR', both_words: false, related: false},
 {word_1: 'MOCKET', word_2: 'MEET', both_words: false, related: false},

 {word_1: 'FLAFF', word_2: 'PLAW', both_words: false, related: false},
 {word_1: 'BALT', word_2: 'TRUDE', both_words: false, related: false},
 {word_1: 'LIBE', word_2: 'NUNE', both_words: false, related: false},
 {word_1: 'MOCKET', word_2: 'FULLOW', both_words: false, related: false}
]

 var lexical_decision_procedure = {
 timeline: [
 {
 type: 'html-keyboard-response',
 stimulus: '<div class="fixation"></div>',
 choices: jsPsych.NO_KEYS,
 trial_duration: 1000
 },
 {
 type: 'html-keyboard-response',
 stimulus: function(){
 return '<div class="fixation"><p class="top">'+jsPsych.timelineVariable('word_1', true)+'</p><p class="bottom">'+jsPsych.timelineVariable('word_2', true)+'</p></div>';
 },
 choices: ['y','n'],
 data: {
 both_words: jsPsych.timelineVariable('both_words'),
 related: jsPsych.timelineVariable('related')
 },
 on_finish: function(data){
 var char_resp = jsPsych.pluginAPI.convertKeyCodeToKeyCharacter(data.key_press);
 if(data.both_words){
 data.correct = char_resp == 'y';
 } else {
 data.correct = char_resp == 'n';
 }
 }
 },
 {
 type: 'html-keyboard-response',
 stimulus: function(){
 var last_correct = jsPsych.data.get().last(1).values()[0].correct;
 if(last_correct){
 return '<div class="fixation correct"></div>';
 } else {
 return '<div class="fixation incorrect"></div>';
 }
 },
 choices: jsPsych.NO_KEYS,
 trial_duration: 2000
 }
],
 timeline_variables: trials,
 randomize_order: true
 }

 timeline.push(lexical_decision_procedure);

 var data_summary = {
 type: 'html-keyboard-response',
 stimulus: function(){
 var mean_rt_related = jsPsych.data.get().filter({related:true, both_words:true, correct: true}).select('rt').mean();
 var mean_rt_unrelated = jsPsych.data.get().filter({related:false, both_words:true, correct: true}).select('rt').mean();
 return '<p>Average response time for related words: '+Math.round(mean_rt_related)+'ms</p>'+
 '<p>Average response time for unrelated words: '+Math.round(mean_rt_unrelated)+'ms</p>'
 },
 choices: jsPsych.NO_KEYS
 }

 timeline.push(data_summary);

 jsPsych.init({
 timeline: timeline
 })
 </script>
</html>

Move the timeline

Navigate to your pushkin project and create a new stub experiment:

You should now have a folder experiments/lex with the following content:

└── myexp
 ├── api controllers
 ├── config.yaml
 ├── migrations
 ├── seeds
 ├── web page
 │ ├── package-lock.json
 │ ├── package.json
 │ └── src
 │ ├── assets
 │ ├── experiment.js
 │ └── index.js
 └── worker

Open experiment.js. It should look like this:

import jsPsych from 'pushkin-jspsych';

const timeline = []

var hello_trial = {
 type: 'html-keyboard-response',
 stimulus: 'Hello world!'
}

timeline.push(hello_trial);

export default timeline;

From the jsPsych tutorial, copy everything between var timeline = [] and jsPsych.init({. Use this code to replace the code in new/web page/src/experiment.js that is between const timeline = [] and export default timeline. Note that the definition of the timeline and the exports still need to be in your file!

Import plugins

In the HTML file at the start of this tutorial, plugins are loaded as scripts inside javascript tags. To load plugins for use with Pushkin, use the loadScripts() method provided by pushkin-client. Open new/web page/src/index.js. Towards the middle of the document, you will see:

async startExperiment() {
 this.setState({ experimentStarted: true });

 jsPsych.data.addProperties({user_id: this.props.userID}); //See https://www.jspsych.org/core_library/jspsych-data/#jspsychdataaddproperties
 await pushkin.connect('/api/pushkintemplate');
 await pushkin.prepExperimentRun(this.props.userID);
 await pushkin.loadScripts([
 'https://cdn.jsdelivr.net/gh/jspsych/jsPsych@6.0.4/plugins/jspsych-html-keyboard-response.js',
]);

This loads the jspsych-html-keyboard-response.js plugin provided with jsPsych v. 6.0.4. This is hosteed by jsdelivr, which for reasons of its own provides access to javascript files from github repositories. Any version of any official jsPsych plugin can be loaded this way. For more information, see the jsdelivr documentation [https://www.jsdelivr.com/?docs=gh].

Static assets

The tutorial above does not require any images or videos. To use static assets, put them in the experiment assets folder (web page/src/assets). Pushkin prep will place them in an accessible public folder. This folder can be referred to using the environment variable process.env.PUBLIC_URL.

For example:

var test_stimuli = [
 { stimulus: process.env.PUBLIC_URL+"/blue.png"},
 { stimulus: process.env.PUBLIC_URL+"/orange.png"}
];

No special imports are required.

Note that this works for local development. Depending on how you deploy to the web, this environment variable may not be available.

About Page

The about page is wrapped in a fluid Container component, which is a full width container, spanning the entire width of the viewport.

Card Image Overlays

The <Card.ImgOverlay> component turns an image into a card background and overlay your card’s text:

<Card className="bg-dark text-white">
 <Card.Img src={require("../assets/images/aboutPage/AboutUs.jpeg")} />
 <Card.ImgOverlay>
 <Card.Title as="h1" style={{marginTop:'12rem'}}>
 Who We Are
 </Card.Title>
 <Card.Text as="h4" className="m-5">
 We do citizen science to learn how the the mind works.
 </Card.Text>
 <Card.Text as="h4">
 We are awesome scientists!
 </Card.Text>
 </Card.ImgOverlay>
</Card>

Add a Team Member In About Page

To add a team member in the about page, open People.js located in components/TeamMember, it should be an array of objects look like this:

const people = [
 {
 name: 'Team Member Name',
 image: 'Template.png',
 description: 'Enter team member description here.'
 },
 {
 name: 'Team Member Name',
 image: 'Template.png',
 description: 'Enter team member description here.'
 },
 {
 name: 'Team Member Name',
 image: 'Template.png',
 description: 'Enter team member description here.'
 },
]

Each object contains three properties: name, image and description. Edit the name and description properties in People.js.

To add a profile picture of the team member. Copy the image file into the assets/images/teamMember folder.

Then edit the image property in People.js, make sure the name of the image file and the image property match, including the extension name, like: Josh.jpg.

Feedback Page

You can go to the feedback page by clicking the HERE button of jumbotron in home page, or clicking the Leave Feedback button in the footer.

To embed a google form into the feedback page:

	Create your own google form [https://www.google.com/forms/about/]

	Go to “Form” dropdown in the spreadsheet view, and click “Embed form in a webpage”.

	This will give you an <iframe> snippet to place on the site template.

	Change the src attribute in <iframe> to your google form link, it is located in pushkin/front-end/src/pages/Feedback.js

Findings Page

Add a Findings Card

To add a card in the findings page, open FindingsData.js located in components/Findings, it should be an array of objects look like this:

const findingsData = [
 {
 title: 'Englishes of the World',
 image: 'EnglishesOfTheWorld.jpg',
 description: 'How do your grammar intuitions depend on when and where you learned English? Participants took a short grammar quiz, which we are using to understand how grammar differs in different parts of the English-speaking world (USA, Ireland, Australia, etc.). We are also investigating how grammar is different for people who learn English later in life: Do they make different mistakes if their first language is German as opposed to Japanese?',
 link: true,
 url: 'https://www.google.com/',
 },
 {
 title: 'The king frightened the page because he...',
 image: 'FrightenedKing.jpeg',
 description: 'This experiment was one in a line of pronoun experiments, most of which were run on Amazon Mechanical Turk. Early summaries of the findings can be found here and here. This experiment was bundled into a larger paper on pronouns which will be published somewhere in 2013/2014. You can read a description of the paper, and find a link to the paper here.',
 link: false,
 url: '',
 },
 {
 title: 'Birth Order and Love',
 image: 'BirthOrder.jpeg',
 description: "Pop psychology assures us that your birth order (oldest, middle, youngest, only) has a major effect on your personality. Many books have been written on the subject. It might surprise you, then, that scientists are not only not sure how birth order affects personality, they are divided on the question of whether birth order has any effect on personality. In this study, we asked people about their own birth order and the birth order of their best friends and significant others, as well as the birth order of their parents. It turns out that people are slightly more likely to have a close friend or significant other/spouse of the same birth order. We think this suggests that birth order does in fact affect personality, though no doubt the debate will continue. It's important that the method we used -- especially the use of the Internet -- avoided some of the typical confounds of birth order studies.",
 link: false,
 url: '',
 },
]

You can edit the five properties: title, image, description, link and url in each object, in order to change the content in each findings card.

To add a external link, set link property to true and fill the url property. Then a Read More button will appear in the findings card.

CardGroup

The <CardGroup> component renders cards as a single, attached element with equal width and height columns. We wrapped card components in <CardGroup> inside a <Container> in findings page.

Align Card Vertically in CardGroup

Use two <Col> components wrapped in one <Row> inside cards:

<Card>
 <Row>
 <Col>
 ...
 </Col>
 <Col>
 ...
 </Col>
 </Row>
</Card>

The content in the first <Col> will be on the left side of the card. And the content in the second <Col> will be on the right side of the card.

For example, the first card in the findings page has its <Card.Img> in the first <Col>, <Card.Body>, <Card.Title>, <Card.Text> in the second <Col>

Header and Footer

The Header.js and Footer.js components are located in pushkin/front-end/src/components/Layout

Navbar logo

To Change the logo in the navbar, copy your logo image into the pushkin/front-end/src/assets/logo folder, modify the path in src={require("../../assets/images/logo/NavbarLogo.png")} in the <Navbar.Brand>. You can also modify the logo’s size using width and height attribute in the tag.

Navbar Color Schemes

Choose from variant="light" for use with light background colors, variant="dark" for dark background colors. Then, customize with the bg prop or any custom css! You can also use the className prop in the <Navbar> component, like className="navbar-dark bg-dark"

Footer

The footer is wrapped in <Row> component. You can change the background color in the style prop: style={{backgroundColor:'#eeeeee'}}.

Home Page

Add a Quiz

To add a quiz, run pushkin experiment basic yourQuizName. This will create a pushkin experiment template experiment in the experiments/ folder.

Open the config.js located in your experiment folder, modify the experiment name, shortName, logo, text etc.

experimentName: &fullName 'mind Experiment'
shortName: &shortName 'mind' # This should be unique as its used for urls, etc.
apiControllers: # The default export from each of these locations will be attached to a pushkin API
 - mountPath: *shortName
 location: 'api controllers'
 name: 'mycontroller'
worker:
 location: 'worker'
 service: # what to add as a service in main compose file
 image: *shortName
 links:
 - message-queue
 - test_db
 environment:
 - "AMQP_ADDRESS=amqp://message-queue:5672"
 - "DB_USER=postgres"
 - "DB_PASS="
 - "DB_URL=test_db"
 - "DB_NAME=test_db"
webPage:
 location: 'web page'
migrations:
 location: 'migrations'
seeds:
 location: ''
Used for migration and seed commands via main CLI
Note that these might be different than those given to the worker,
Since it's running inside a linked docker container
database: 'localtestdb'
logo: 'Mind.png'
text: 'Enter your experiment description here'
tagline: 'Be a citizen scientist! Try this quiz.'
duration: ''

After running pushkin prep, the experiments.js located in pushkin/front-end/src will be updated, it should be an array of objects like this:

export default [
 { fullName: 'vocab Experiment', shortName: 'vocab', module: pushkinComponent7e170301859545dab691a08652b798a8, logo: 'logo512.png', tagline: 'Be a citizen scientist! Try this quiz.', duration: '' },
 { fullName: 'mind Experiment', shortName: 'mind', module: pushkinComponent1d77ca65c9f94dac834629611d452c8e, logo: 'logo512.png', tagline: 'Be a citizen scientist! Try this quiz.', duration: '' },
 { fullName: 'whichenglish Experiment', shortName: 'whichenglish', module: pushkinComponentbbca5356917345c2b2532e84e5325197, logo: 'logo512.png', tagline: 'Be a citizen scientist! Try this quiz.', duration: '' },
];

Then the new quiz card will be automatically added to the home page.

Jumbotron

The Jumbotron [https://react-bootstrap.github.io/components/jumbotron/] is a lightweight, flexible component that can optionally extend the entire viewport to showcase key content on your site.

<Jumbotron style={{backgroundColor:'#eeeeee'}}>
 <div>
 We do citizen science to learn how the mind
 works.{' '}
 </div>
 <div>

 Pick a game to get started!

 </div>
 <div className="mt-3">
 Feel free to send us feedback <LinkContainer to="/feedback"><a>HERE</LinkContainer>
 </div>
</Jumbotron>

It includes a link to the feedback page, an archor tag wrapped in <LinkContainer> component.

CardDeck

The <CardDeck> creates a grid of cards that are of equal height and width. The layout will automatically adjust as you insert more cards. We recommend putting every 3 cards in a card deck. Quizzes are wrapped in card decks in Home.js located in pushkin/front-end/src/pages.

Card

Bootstrap’s cards [https://react-bootstrap.netlify.app/components/cards/] provide a flexible and extensible content container with multiple variants and options:

	Body: Use <Card.Body> to pad content inside a <Card>.

	Title, text, and links: Using <Card.Title>, <Card.Subtitle>, and <Card.Text> inside the <Card.Body> will line them up nicely. <Card.Link> are used to line up links next to each other.

	Images: Cards include a few options for working with images. Choose from appending “image caps” at either end of a card, overlaying images with card content, or simply embedding the image in a card.

For example, the quiz card in the home page:

<Card className="border-0 shadow" style={styles.card}>
 <Card.Body>
 <Card.Img src={this.props.img} style={styles.cardImage} />
 <Card.Title className="mt-4" style={styles.cardTitle}>
 {this.props.title}
 </Card.Title>
 <Card.Text className="mt-4" style={styles.cardText}>
 {this.props.text}

 {/* {this.props.duration && (
 <p>
 {' '}

 {' '}
 Average time: {this.props.duration} minutes.{' '}
 {' '}
 </p>
)}

 {this.state.count && (
 <p> {this.state.count} players so far! </p>
)} */}
 </Card.Text>
 </Card.Body>
 <Row className="justify-content-center mt-2">
 <LinkContainer style={styles.cardButton} to={'/quizzes/' + this.props.id}>
 <Button>Play Now</Button>
 </LinkContainer>
 </Row>
 <Row className="justify-content-center mt-3 mb-3">
 <i.SocialIcon
 url={share.facebook}
 onClick={e => {
 e.preventDefault();
 share.open(share.facebook);
 }}
 style={styles.socialIcon}
 target="_blank"
 />
 <i.SocialIcon
 url={share.twitter}
 onClick={e => {
 e.preventDefault();
 share.open(share.twitter);
 }}
 style={styles.socialIcon}
 target="_blank"
 />
 <i.SocialIcon
 url={share.email}
 style={styles.socialIcon}
 target="_blank"
 />
 {/* BETA ribbon */}
 {/* {this.props.beta && (
 <LinkContainer to={'/quizzes/' + this.props.id}>
 <div className={s.ribbon + ' ' + s.ribbonBottomLeft}>
 {' '}
 BETA{' '}
 </div>
 </LinkContainer>
)} */}
 </Row>
</Card>

The components inside a quiz card, in order from top to bottom, are:

	<Card.Img>: Quiz cover image

	<Card.Title>: Quiz name

	<Card.Text>: Quiz description

	<Button>: Wrapped in <LinkContainer>

	<SocialIcon>: The react social icons [https://www.npmjs.com/package/react-social-icons] provides a set of beautiful svg social icons.

Modifying Site Template

	React Bootstrap
	Import Libraries

	Inline Styling

	Spacing

	LinkContainer

	Header and Footer
	Navbar logo

	Navbar Color Schemes

	Footer

	Home Page
	Add a Quiz

	Jumbotron

	CardDeck

	Card

	Findings Page
	Add a Findings Card

	CardGroup

	Align Card Vertically in CardGroup

	About Page
	Card Image Overlays

	Add a Team Member In About Page

	Feedback Page

React Bootstrap

The pushkin site template uses React-Bootstrap [https://react-bootstrap.github.io/] as its front end UI library. It is a complete re-implementation of the Bootstrap components using React. It has no dependency on either bootstrap.js or jQuery.

Import Libraries

You should import individual components like: react-bootstrap/Button rather than the entire library. Doing so pulls in only the specific components that you use, which can significantly reduce the amount of code you end up sending to the client:

import Button from 'react-bootstrap/Button';

// or less ideally
import { Button } from 'react-bootstrap';

Inline Styling

In React, inline styles are not specified as a string. Instead they are specified with an object whose key is the camelCased version of the style name, and whose value is the style’s value, usually a string:

const styles = {
 card: {
 backgroundColor: '#B7E0F2',
 borderRadius: 55
 },
 cardTitle: {
 fontSize: 26,
 fontWeight: 600
 },
 cardBody: {
 padding: '2.5rem'
 },
 cardImage: {
 width: '100%',
 height: '15vw',
 objectFit: 'cover',
 borderRadius: 55
 }
}

React lets you add CSS inline, written as attributes and passed to elements:

<Container className="p-0" fluid style={styles.container}>

Spacing

React Bootstrap spacing is a utility which assigns responsive margin or padding classes to elements to modify its display position.

The classes are named using the format {property}{sides}-{size} for xs and {property}{sides}-{breakpoint}-{size} for sm, md, lg, and xl.

Where property is one of:

	m - for classes that set margin

	p - for classes that set padding

Where sides is one of:

	t - for classes that set margin-top or padding-top

	b - for classes that set margin-bottom or padding-bottom

	l - for classes that set margin-left or padding-left

	r - for classes that set margin-right or padding-right

	x - for classes that set both *-left and *-right

	y - for classes that set both *-top and *-bottom

	blank - for classes that set a margin or padding on all 4 sides of the element

Where breakpoint is one of:

	sm

	md

	lg

	xl

Where size is one of:

	0 - for classes that eliminate the margin or padding by setting it to 0

	1

	2

	3

	4

	5

For example:

It means marginLeft is 2 and marginRight is 2 as well.

It means margins of all sides (left, right, top, bottom) are 4.

LinkContainer

<LinkContainer> is a component of react-router-bootstrap [https://github.com/react-bootstrap/react-router-bootstrap]. Wrap your React Bootstrap element in a <LinkContainer> to make it behave like a React Router <Link> <LinkContainer> accepts same parameters as React Router’s <NavLink>

Testing Pushkin with Jest

Jest [https://jestjs.io/en/] is a JavaScript library for creating, running, and structuring tests.

Install Jest using npm:

$ npm install --save-dev jest

To use Babel, install required dependencies via npm:

$ npm install --save-dev babel-jest @babel/core @babel/preset-env

Configure Babel to target your current version of Node by creating a babel.config.js file in the root of your project:

// babel.config.js
 module.exports = {
 presets: [
 [
 '@babel/preset-env',
 {
 targets: {
 node: 'current',
 },
 },
],
],
 };

The ideal configuration for Babel will depend on your project. See Babel’s docs [https://babeljs.io/docs/en/] for more details.

To learn more about testing, go to Jest official documentation [https://jestjs.io/docs/en/getting-started].

Users & Authentication

Subject responses are associated with a username. This is either a randomly-generated string, or it’s based off an auth0 userID. The value of the username is maintained in the redux store as UserID.

The userID is set by a redux saga:

//actions/userInfo.js

export function getUser(isAuthenticated, user) {
 return {
 type: GET_USER,
 isAuthenticated: isAuthenticated,
 user: user
 };
}

//sagas/userInfo.js

export function* getUserLogic(action) {
 console.log('Saga2 initialized...');
 const id = action.isAuthenticated ?
 action.user :
 yield session.get();
 console.log(id);
 yield put({ type: SET_USER_ID, id: id });
}

export function* getUser() {
 yield takeLatest(GET_USER, getUserLogic);
}

Note that the action needs to be passed isAuthenticated and user, both of which come from the AuthProvidor (see below). For convenience, this saga is triggered every time the Header is loaded (which is on every page):

const Header = props => {
 const { isAuthenticated, loginWithRedirect, logout, user } = useAuth0();
 if (!CONFIG.useAuth) {
 const isAuthenticated = false;
 const user = null;
 }

 useEffect(() => {
 props.dispatch(getUser(isAuthenticated, user));
 }, [isAuthenticated, props.userID, user]);

Note that userEffect is a React lifecycle hook for functional components [https://itnext.io/add-state-and-lifecycle-methods-to-function-components-with-react-hooks-8e2bdc44d43d]. It gets triggered when the component is loaded, as well as any time the values of isAuthenticated, props.userID or user change.

In principle, this saga could be triggered elsewhere. One thing to keep track of is that because it is asyncronous, components (including the header) may load before the user has been set.

Generating UserIDs

Randomly-generated string

If authenticated with auth0 is not enabled, then the value of props.userID comes from a cookie. For that code, see front-end/src/utils/session.js. The purpose of the cookie is to enable the userID to persist across browser refreshes (browser refresh re-initializes the Redux store.) Maximum life of the cookie is 2 days. (We aren’t in the business of tracking people without opt-in consent.)

Note that if authentication is not enabled, then the value of isAuthenticated will always be false. (See the variable definitions in the Header component.)

Note that the action triggering the creation (or checking) of the cookie (getSessionUser()) is handled by a Redux Saga (see front-end/src/sagas).

Auth0

If authentication is enabled, then userIDs can be supplied by auth0. We use code from the auth0 SPA quickstart, which is found in front-end/src/utils/react-auth0-spa.js. This code provides a component that wraps the entire application in front-end/src/index.js:

<Auth0Provider
 domain={CONFIG.authDomain}
 client_id={CONFIG.authClientID}
 redirect_uri={window.location.origin}
 onRedirectCallback={onRedirectCallback}
>
 <Provider store={store}>
 <Router history={customHistory}>
 <App />
 </Router>
 </Provider>
</Auth0Provider>,

As you can see, it looks a lot like the Redux providor. It works similarly: children get access to a few useful variables and methods. You can see this in react-auth0-spa.js:

return (
 <Auth0Context.Provider
 value={{
 isAuthenticated,
 user,
 loading,
 popupOpen,
 loginWithPopup,
 handleRedirectCallback,
 getIdTokenClaims: (...p) => auth0Client.getIdTokenClaims(...p),
 loginWithRedirect: (...p) => auth0Client.loginWithRedirect(...p),
 getTokenSilently: (...p) => auth0Client.getTokenSilently(...p),
 getTokenWithPopup: (...p) => auth0Client.getTokenWithPopup(...p),
 logout: (...p) => auth0Client.logout(...p)
 }}
 >
 {children}
 </Auth0Context.Provider>
);

You will notice user. By default, the value of user is the username from whatever social media application (etc.) the user used to authenticate. This is often the user’s actual name, which we don’t want. So the auth0 quickstart code was modified to retrieve the auth0 numerical ID instead, which is presumably (??) unique to your application. We then immediately run this through a salted hash.

Why? It makes it harder to link data in a Pushkin database to a person. That is, someone who had access to your database and to your auth0 account still wouldn’t be able to match the user data to an individual in auth0. They would also need the salt string, which is stored separately. Even if they had it, it would be a pain to use, because you can’t easily decrypt something that has been hashed. The only option would be to encrypt every auth0 ID and then see what in the database matches.

They key code is in utils/react-auth0-spa.js. First, we define a helper function:

var crypto = require('crypto');
var sha512 = function(id, salt){
 var hash = crypto.createHmac('sha512', salt); /** Hashing algorithm sha512 */
 hash.update(id);
 var value = hash.digest('base64');
 return value;
};

There are several different places where userIDs are retrieved. In each case, we encrypt:

const claims = await auth0FromHook.getIdTokenClaims();
const encrypted = await sha512(claims.sub, CONFIG.salt);
setUser(encrypted);

Finally, note that when users log out of auth0, the userID is set to null:

<b.Button onClick={() => {
 logout();
 props.dispatch(setUserID(null));
 }
 }>Logout</b.Button>

This will trigger the assignment of a new userID via the cookie method.

Using UserIDs

userID is automatically available to any component that is connected to the Redux store. This unfortunately does not include the quizzes themselves. Instead, the TakeQuiz component passes the entire Redux store as a prop:

class TakeQuiz extends React.Component {
 render() {
 const { match } = this.props;
 const QuizComponent = expObject[match.params.quizName];
 return (
 <div>
 <QuizComponent {...this.props} />
 </div>
);
 }
}

(Note that TakeQuiz is a connected component, so its props include the entire Redux store.)

Most of the methods for Pushkin-Client expect to be explicitly sent the userID. This can be done from within the QuizComponent. For example:

endExperiment() {
 this.setState({ experimentComplete: true });
 pushkin.endExperiment(this.props.userID);
}

The exception is any Pushkin Client method that is called directly by jsPsych’s onFinish function. This is because this function takes a single argument, which is trial data. Here is an example:

saveStimulusResponse(data) {
 // Because we are saving data, it should be coming with a userID already
 // Might make sense at some point to confirm this is what we expect
 const postData = {
 user_id: data.user_id,
 data_string: data
 };
 return this.con.post('/stimulusResponse', postData);
}

You will see that this expects user_id to be passed as part of the data. The easiest way to make this happen is to use jsPsych’s handy data.addProperties method [https://www.jspsych.org/core_library/jspsych-data/#jspsychdataaddproperties]. Here is a code snippet from one of the template experiments:

async startExperiment() {
 this.props.history.listen(jsPsych.endExperiment);

 jsPsych.data.addProperties({user_id: this.props.userID}); //See https://www.jspsych.org/core_library/jspsych-data/#jspsychdataaddproperties

Website Structure

Pushkin websites typically host multiple experiments or citizen science projects. This requires keeping track of and organizing many website components.

	Experiments.js

	Web Page

controllers.json

This file contains a json with a complete list of the pushkin API controllers for each experiment in the website. This file is created and maintained by pushkin prep. It is unlikely it would need to be edited manually.

experiments.js

front-end/src/experiments.js importants components for each experiment on the website and exports them as React modules. experiments.js is created and maintained automatically by pushkin prep based on the experiments in the experiments folder. It is unlikely that this file would need to be edited manually.

Website Structure

Pushkin websites typically host multiple experiments or citizen science projects. This requires keeping track of and organizing many website components.

	Experiments.js

	Web Page

Pushkin Worker

Pushkin workers interface between RabbitMQ and database(s). A worker is created like this:

import pushkinWorker from 'pushkin-worker';

const workerOptions = {
 readQueue: 'myexp_quiz_dbread',
 writeQueue: 'myexp_quiz_dbwrite',
 taskQueue: 'myexp_quiz_taskworker',
 amqpAddress: process.env.AMQP_ADDRESS
};

const myWorker = new pushkinWorker(workerOptions);

The queues are the respective RabbitMQ queues to listen on. They should match the names of the queues the API for this experiment is sending on. amqpAddress is a connection string for RabbitMQ and is provided by default in a worker’s Docker environment via pushkin prep.

init

Arguments: None

Returns: Promise. Resolves upon connection to RabbitMQ.

handle

	Arguments:

	
	method : string

Name of RPC method to associate with this function (below).

	handler : function

Function to call when this method (above) is called. The value is sent back along the same queue it was received on. Receives a session id, data sent in the rpc call, and the parameters of the request to the API server as defined in the Express framework.

Returns: None

useDefaultHandles

	Arguments:

	
	DB URL : string

Connection string for this experiment’s main database.

	table prefix : string

The prefix to assume for default table names in the database. Same as shortName in the experiment’s config.yaml by default.

	transaction options : { url : string, tableName : string, mapper : function }

An optional argument to enable logging transactions.

	url is the connection string for the transaction database.

	tableName is the name of the table in this database to log transactions in.

	mapper is a function of string -> object. It’s given an SQL query string (representing what was run on the main database) and should return an object with fields and values matching what to insert into the transactions table.

Returns: None

start

	Arguments:

	
	something : type

Description

Returns: something

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Pushkin’s documentation has moved!

_static/comment-bright.png

_static/ajax-loader.gif

